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In this report we describe the design of a Reed-Solomon error 
correction core that supports errors and erasures decoding. In a 
second report HPL-2001-125 we describe the verification of this core.
 
The core consists of separate encoder and decoder blocks that can be 
operated independently, each with symbol wide data paths. These 
blocks have sufficient throughput to handle back-to-back codewords, 
and the overall latency is typically less than two codewords.
 
The design is expressed in the Verilog hardware description language 
(Verilog HDL), and is fully synthesisable. The design supports a wide 
range of different Reed-Solomon codes, with the choice of a particular 
code being made at synthesis time. This approach has a number of 
advantages that aid shorter product design cycles, by allowing the 
changes in the choice of code and target technology to be made late in 
the design cycle. Because of its flexibility, the design could be reused 
across a wide range of products with differing coding requirements.
 
A sample design configured for a RS(160, 128,T=16) code in GF(2^8) 
was targeted to the Agere HL200CDE 0.20um standard cell library. 
This resulted in a gate count of 72K gates, an encoder latency of 2 
cycles and a decoder latency of 305 cycles. The design could be 
clocked at 70MHz. 
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1 Introduction 
 
This document describes the designof the Reed-Solomon ECC block designed by HP 
Labs Bristol. For further details on the verification of the, please refer to [1] 
 
A Reed Solomon code of the form RS(B, B - 2T, T) has the following properties: 
• Codewords are blocks of B symbols, where B – 2T of these symbols are 

information symbols, and the remaining 2T are check symbols. 
• Symbols are sequences of W bits. 
• It can correct up to T symbol errors; an error is a corruption whose location and 

magnitude are unknowns. 
• It can correct up to 2T symbol erasures; an erasure is a corruption whose location 

is known, but whose magnitude is unknown. 
• It can correct any combination of E symbol errors and J symbol erasures, as long 

as 2E + J ≤ 2T. 
• If B = 2W-1, the code is said to be a full-length code. 
• If B < 2W-1, the code is said to be a shortened code. 
 
Reed-Solomon codes operate in Galois fields; for an introduction to Galois field 
arithmetic, see[2].  
 
Codewords are treated as polynomials by using the codeword symbol values as the 
coefficients of the polynomial. The standard convention in Reed-Solomon codes is 
that the value of the first symbol (i.e. the first information symbol) in the codeword is 
used as the coefficient for the xB-1 term, and the value of the last symbol in the 
codeword (i.e. the last check symbol) is used at the coefficient for the x0 term. 
  
A valid codeword has the property that, when viewed as a polynomial, it is exactly 
divisible by the code generator polynomial. The code generator polynomial takes the 
form: 

TT
T

TLLLL

xxgxgxgg

xxxxxg
212

12
2

210

1221 )())()(()(

+++++=

++++=
−

−

−+++

K

K αααα
 

 
The choice of L is somewhat arbitrary, in that all values of L result in valid Reed-
Solomon codes. Some simplifications of the decoder are possible if L=1. Some 
simplifications of the encoder are possible for values of L that give rise to palindromic 
generator polynomials. We have used the case where L=1. 
 
The 2T check symbols are calculated from: b(x) = x2T a(x) mod g(x), where the 
coefficients of a(x) are the information symbols, and the coefficients of b(x) are the 
check symbols. 
 
The codeword c(x) is calculated from: c(x) =  x2T a(x) + b(x). This is simply a 
concatenation of a(x) and b(x). The codeword c(x) is now exactly divisible by g(x). 
 
The minimum distance between different codewords is 2T + 1. Any two codewords 
will differ by at least 2T + 1 symbols; we can add T errors, and still be closer to the 
original codeword that to any other. 
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2 Galois field operations 
2.1 Field generation 
The Galois field GF(2W) is a finite field consisting of 2W elements, generated from a 
primitive field generator polynomial. 
 
For example, the Galois field GF(24) can be generated from the primitive polynomial 
p(x) = x4 + x + 1. 
 
GF(24) consist of the following elements: 
 { 0, 1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14 } 
where α is the root of p(x), i.e. p(α) = 0. 

2.2 Representations 

2.2.1 Power representation 
Power representation of field elements is in the form αi where 0 ≤ i ≤ 2W – 2. 

2.2.2 Tupple representation 
Tupple representation of field elements uses the fact that p(α) = 0. 
 
For example, in GF(24) generated from p(x) = x4 + x + 1: 

p(x)  = x4 + x + 1 
p(α)  = α4 + α + 1 = 0 
∴α4  = α + 1 

 
Similarly, 

α5  = α α4 
= α (α + 1) 
= α2 + α 

 
In general, each field element may be represented as a linear combination of αW-1…  

α2 α1 and α0. 
 
For GF(24) generated from p(x) = x4 + x + 1, the complete field is: 
 

power 
representation 

tupple 
representation 

0 0 
1 1 
α α 
α2 α2 
α3 α3 
α4 α + 1 
α5 α2 + α 
α6 α3 + α2 
α7 α3 + α + 1 
α8 α2 + 1 
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α9 α3 + α 
α10 α2 + α + 1 
α11 α3 + α2 + α 
α12 α3 + α2 + α + 1 
α13 α3 + α2 + 1 
α14 α3 + 1 

2.2.3 Binary representation 
Binary representation simply uses the coefficient of αi as the ith bit in a W-bit number. 
 
For GF(24) generated from p(x) = x4 + x + 1, this looks like: 

 
power 

representation 
tupple 

representation 
binary 

representation 

0 0 0000 
1 1 0001 
α α 0010 
α2 α2 0100 
α3 α3 1000 
α4 α + 1 0011 
α5 α2 + α 0110 
α6 α3 + α2 1100 
α7 α3 + α + 1 1011 
α8 α2 + 1 0101 
α9 α3 + α 1010 
α10 α2 + α + 1 0111 
α11 α3 + α2 + α 1110 
α12 α3 + α2 + α + 1 1111 
α13 α3 + α2 + 1 1101 
α14 α3 + 1 1001 

 
It is quite straightforward to show that if a linear feedback shift register is constructed 
from p(x) and seeded with 1, then the sequence generated will correspond to the 
binary representation sequence shown above. 

2.3 Arithmetic operations 
When implementing Galois field arithmetic operations, we assume the data is in 
binary representation.  

2.3.1 Addition 
Addition in GF(2): 
 
 0 + 0 = 0 
 0 + 1 = 1 
 1 + 0 = 1 
 1 + 1 = 0 
 
Addition in GF(24): 
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β  = b0 + b1α + b2α2 + b3α3 and γ = c0 + c1α + c2α2 + c3α3 

 

where β , γ ∈ GF(24) and bi, ci ∈ GF(2) 
 
β  + γ = (b0 + c0) + (b1 + c1)α + (b2 + c2)α2 + (b3 + c3)α3 

 
Thus, addition of two field elements is achieved by XORing the binary representation 
of two field elements together. 
 
The following parameterised verilog function generates the hardware for Galois field 
addition: 
 

function [WIDTH - 1 : 0] GFAdd_fn; 
  input [WIDTH - 1 : 0] a; 
  input [WIDTH - 1 : 0] b; 
begin 
  GFAdd_fn = a ^ b; 
end 
endfunction 

2.3.2 Full multiplication 
Multiplication in GF(2): 
 
 0 . 0 = 0 
 0 . 1 = 0 
 1 . 0 = 0 
 1 . 1 = 1 
 
Multiplication in GF(24): 
 

β  = b0 + b1α + b2α2 + b3α3 and γ = c0 + c1α + c2α2 + c3α3 

 

where β , γ ∈ GF(24) and bi, ci ∈ GF(2) and p(x) = x4 + x + 1 
 
β  . γ  = p0 + p1α + p2α2 + p3α3 + p4α4 + p5α5 + p6α6 

= p0 + p1α + p2α2 + p3α3 + p4(α + 1) + p5(α + α2)+ p6(α2 + α3) 

= (p0 + p4) + (p1 + p4 + p5)α + (p2 + p5 + p6)α2 + (p3 + p6)α3 
  = d0 + d1α + d2α2 + d3α3 

 

 where 
p0 = b0 c0 
p1 = b0 c1 + b1 c0 
p2 = b0 c2 + b1 c1 + b2 c0 

p3 = b0 c3 + b1 c2 + b2 c1 + b3 c0 
p4 = b1 c3 + b2 c2 + b3 c1 

p5 = b2 c3 + b3 c2 
p6 = b3 c3 

 
The hardware to implement this is illustrated in Figure 1. 
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Figure 1 - GF(24) Multiplier 

The following parameterised verilog function generates the hardware for Galois field 
multiplication: 
 

function [WIDTH - 1 : 0] GFMult_fn; 
  input [WIDTH - 1 : 0] a; 
  input [WIDTH - 1 : 0] b; 
  reg [WIDTH * WIDTH - 1 : 0] 
    andarray; 
  reg [WIDTH * 2 - 2 : 0] 
    product; 
  reg [WIDTH - 1 : 0] 
    tmp; 
  integer 
    i, 
    j, 
    prbs; 
begin 
  andarray = 0; 
  product = 0; 
  tmp = 0; 
  for (i = 0; i < WIDTH; i = i + 1) 
    for (j = 0; j < WIDTH; j = j + 1) 
      andarray[i * WIDTH + j] = a[i] & b[j]; 
  for (i = 0; i < WIDTH * 2 - 1; i = i + 1) 
    begin 
      product[i] = 0; 
      for (j = ((i < WIDTH) ? 0 : i - WIDTH + 1); 
         j <= ((i < WIDTH) ? i : WIDTH - 1); 
         j = j + 1) 
        product[i] = product[i] ^ andarray[WIDTH * j + i - j]; 
    end 
  for (i = 0; i < WIDTH; i = i + 1) 
    begin 
      tmp[i] = 0; 
      prbs = 1; 
      for (j = 0; j < WIDTH * 2 - 1; j = j + 1) 
        begin 
          if (prbs & (1 << i)) 
            tmp[i] = tmp[i] ^ product[j]; 
          prbs = prbs << 1; 
          if (prbs & (1 << WIDTH)) 
            prbs = prbs ^ PRIMITIVE; 
        end 
    end        
  GFMult_fn = tmp; 
end 
endfunction 

 
The three loops in the verilog correspond directly to the three stages in the Figure 1. 
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2.3.3 Constant multiplication 
The verilog function for full multiplication can also be used when one of the operands 
is a constant. If this constant is allowed to propagate through the logic, the logic can 
be considerably optimised. The specific gates that are removed will depend on the 
value of the constant. Synopsys can perform this optimisation automatically. 
 
As an example, assume β  = α9 =  α3 + α = 1010: 
 

β  = α +α3 and γ = c0 + c1α + c2α2 + c3α3 

 

where β , γ ∈ GF(24) and bi, ci ∈ GF(2) and p(x) = x4 + x + 1 
 
β  . γ  = p0 + p1α + p2α2 + p3α3 + p4α4 + p5α5 + p6α6 

= p0 + p1α + p2α2 + p3α3 + p4(α + 1) + p5(α + α2)+ p6(α2 + α3) 

= (p0 + p4) + (p1 + p4 + p5)α + (p2 + p5 + p6)α2 + (p3 + p6)α3 

 
 where 

p0 = b0 c0 
p1 = b0 c1 + b1 c0 
p2 = b0 c2 + b1 c1 + b2 c0 

p3 = b0 c3 + b1 c2 + b2 c1 + b3 c0 
p4 = b1 c3 + b2 c2 + b3 c1 

p5 = b2 c3 + b3 c2 
p6 = b3 c3 

 

 Now, substituting b0 = 0, b1 = 1, b2 = 0 b3 = 1 
p0 = 0 
p1 = c0 
p2 = c1 
p3 = c2 + c0 

p4 = c3 + c1 
p5 = c2 

p6 = c3 

 

β  . γ  = (c3 + c1) + (c0 + c3 + c1 + c2)α + (c1 + c2 + c3)α2 + (c2 + c0 + c3)α3 
  = d0 + d1α + d2α2 + d3α 
 
From this example it can be seen that the array of AND gates can be optimised away, 
and that the result could be formed by XORing together bit combinations from the 
variable input. In this case, eight 2-input XOR gates would be required. 
 
In general, the silicon area of a constant multiplier is about 25% of that of a full 
multiplier. 

2.3.4 Inversion 
Inversion of a field element is best done as a lookup table for small fields. The 
following verilog function can be used to construct such a lookup table: 
 

function [WIDTH - 1 : 0] GFInverse_fn; 
  input [WIDTH - 1 : 0] 
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    a; 
  reg [WIDTH - 1 : 0] 
    res, 
    prbstable [0 : (1 << WIDTH) - 1]; 
  integer 
    i, 
    prbs; 
begin 
  prbs = 1; 
  for (i = 0; i < (1 << WIDTH); i = i + 1) begin 
    prbstable[i] = prbs; 
    prbs = prbs << 1; 
    if (prbs & (1 << WIDTH)) 
      prbs = prbs ^ PRIMITIVE; 
  end 
  res = 0; 
  for (i = 0; i < (1 << WIDTH) - 1; i = i + 1) 
    if (a == prbstable[i]) 
      res = prbstable[(1 << WIDTH) - 1 - i]; 
  GFInverse_fn = res; 
end 
endfunction 
 

The input to the function, a, is in binary representation. 
 
The first for loop is used to fill the prbstable memory with the binary representation 
of successive field elements. The binary representation of αi is stored in prbstable 
entry i. 
 
The second for loop iterates through the table until an entry equal to a is found. The 
index of that entry is i, and so the element a in power representation is αi.  
 
The inverse of αi is α2^W - 1 - i. 
 
The element at entry 2W - 1 - i is the inverse of a, in binary representation, and so this 
value is returned by the function. 
 
It turns out that Synopsys does a reasonable job of expanding these loops and 
optimising the resultant logic, at least for the field GF(28). 

2.4 Representation conversion 

2.4.1 Power to tupple conversion 
The following verilog implements power to tupple conversion. In our implementation 
this is used to generate constants, and so no logic is actually generated: 
 

function [WIDTH - 1 : 0] GFPtoT_fn; 
  input [31:0] 
    power; 
  integer 
    i, 
    tupple; 
begin 
  tupple = 1; 
  if (power % ((1 << WIDTH) - 1) != 0) 
    for (i = 0; i < power % ((1 << WIDTH) - 1) ; i = i + 1) 
      begin 
        tupple = tupple << 1; 
          if (tupple & (1 << WIDTH)) 
            tupple = tupple ^ PRIMITIVE; 
      end 
  GFPtoT_fn = tupple; 
end 
endfunction 
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2.4.2 Tupple to power conversion 
Tupple to power conversion is not needed. 
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3 Encoder 
3.1 Algorithm 

The encoder needs to calculate the 2T check symbols from the B – 2T information 
symbols, such that the resultant codeword is exactly divisible by the generator 
polynomial. 
 
The 2T check symbols are calculated from: b(x) = x2T a(x) mod g(x), where the 
coefficients of a(x) are the information symbols, and the coefficients of b(x) are the 
check symbols. 
 
The codeword c(x) is calculated from: c(x) =  x2T a(x) + b(x). This is simply a 
concatenation of a(x) and b(x). The codeword c(x) is now exactly divisible by g(x). 

3.2 Interface 
module encoder ( 
                // INPUTS 
    clock, 
    clocken,    // an active high clock enable 
    reset, 
    load,       // Must be asserted to mark the first symbol of the message. 
    din,        // The symbols of the message to be encoded. 
 
                // OUTPUTS 
 
    active,     // Asserted (high) during the output of the codeword. 
    sob,        // Asserted (high) to mark the first symbol of the codeword. 
    eob,        // Asserted (high) to mark the last symbol of the codeword. 
    dout        // The symbols of the codeword. 
); 
 
The system clock has the rising edge as the active edge. 
 
The reset is an active high synchronous reset, and must be asserted for a minimum of 
one clock period. 
 
To load a B-2T symbol message into the encoder, the load signal must be asserted 
with the first symbol of the message, and then de-asserted as the remaining B-2T-1 
symbols of the message are clocked in over successive clock cycles. There must be a 
minimum of 2T idle cycles between the B-2T symbol messages to allow time for 
computation of the check symbols. 
 
Stall cycles may be inserted at any point by taking clocken low. This freezes the state 
of the whole encoder, and is equivalent to gating the clock. 
 
There is minimal buffering within the encoder, so the first symbol of the B symbol 
codeword will be output on dout a few clock cycles after load is asserted. The 
remaining symbols of the codeword are output on dout over successive clock cycles. 
 
The actual latency of the encoder (load active to sob active) is 2 clock cycles (i.e. the 
equivalent of two pipeline register stages), assuming clocken is held high. Any stall 
cycles add directly to the latency. 
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Active is asserted (high) for the B cycles during which the codeword is being output. 
Sob is asserted (high) with the first symbol of the codeword. Eob is asserted (high) 
with the last symbol of the codeword. 
 
The throughput of the encoder is such that it can output back-to-back codewords 
without any idle cycles in between. 
 
The timing diagram for a RS(160,128,T=16) code is shown below in Figure 2. 

0 1 2 3 4 5 6 7 8 127

0 1 2 4 5 6 1253 126 127 128 158 159 0157

0 1 2

1 2

3 4 5

3

clocken

load

clock

din

sob

active

eob

dout

128 information
symbols

32 check
 symbols

stall stall

B=160
T=16

 
Figure 2 - Encoder timing diagram 

This example shows one codeword, possibly followed immediately by a second one. 
The diagram also shows some stall cycles. During a stall cycle the values applied to 
the inputs are immaterial, and the outputs hold their previous values. 
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3.3 Block diagram 
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Figure 3 - Encoder block diagram 

3.4 Operation  
The classic linear-feedback shift register (LFSR) structure can be used to perform 
polynomial division. For a detailed description of how this works, see [3] page 172. 
The polynomial formed from the B – 2T information symbols is divided by the 
generator polynomial, and the remainder of this division is used as the 2T check 
symbols. 
 
The lower half of Figure 3 implements a 2T tap LFSR. The multiplier coefficients are 
the coefficients of the generator polynomial in its expanded form (i.e. gi is the 
coefficient of the xi term). 
 
The state table for the encoder block is shown below:  
 

state count comment 
EN_IDLE 0 Stay in this state until load 

asserted. 
EN_DATA 0 
EN_DATA 1 
… … 
EN_DATA B - 2T - 1 

Stay in this state for B – 2T cycles 
while information symbols are 
consumed and check symbols 
calculated. 

EN_CODE B - 2T 
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EN_CODE B - 2T + 1  
… … 
EN_CODE B - 1 

Stay in the state for 2T cycles 
while check symbols are clocked 
out.  
If generating back-to-back 
codewords, move straight back to 
EN_DATA, else EN_IDLE. 

EN_DATA or 
EN_IDLE 

0 etc 

Table 1 - State table for the encoder block 

Initially the state machine is in the EN_IDLE state. 
 
As soon as load is asserted, the state machine moves to the EN_DATA state and the 
counter starts incrementing. For the next B – 2T cycles the multiplexors connect the 
adder outputs to the register inputs, thus forming an LFSR. At the end of B – 2T 
cycles, the LFSR registers hold the remainder. 
 
When the count reaches B – 2T – 1 the state machine moves to the EN_DATA state. 
The multiplexors now simply connect the registers into a conventional shift register, 
allowing the check symbols to be shifted out, most significant first. For the next 2T 
cycles the check symbols are shifted out. 
 
When the counter reaches B – 1, the state machine will move back to the EN_IDLE 
state (if load is zero) or move back to the EN_DATA state (if there is another data 
block to encode). 
 
There is an optimisation that could be done to remove the 2T multiplexors. A gate 
could be inserted in the feedback path, allowing the feedback term to be forced to 
zero. This would have the same effect as switching over the multiplexors. If this were 
done, the reset behaviour would change slightly. On reset, the state machine would 
have to stay in the idle state for 2T cycles, allowing zeros to propagate through the 
registers. 
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4 Decoder 
4.1 Algorithm 
Almost all practical decoders reported in the literature follow the syndrome based 
decoding approach. This involves the following steps: 
1. Calculate the syndromes 
2. Calculate the error locator polynomial σ(x) from the syndromes 
3. Find the roots of the error locator polynomial σ(x) to determine the error locations 
4. Calculate the error values 
 
We have taken this approach, and included additional steps to support erasures 
decoding. 
 
Let the original codeword be represented by the polynomial: 
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Let the error pattern be represented by the polynomial: 
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Let the received (corrupted) codeword be represented by the polynomial: 
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Calculate the syndrome polynomial: 
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Form the erasure locator polynomial: 
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Calculate the modified syndrome polynomial: 

TxxxSxT 2mod)()()( Λ⋅=  
 

Use the extended Euclidean Algorithm to )( and )( xx ωσ that solve the key equation: 
TxxxTx 2mod)()()( ωσ ≡⋅  

 

polynomialevaluator  errata  theis (x) 
polynomiallocator error   theis )( 

ω
σ x

 

 
Use the Chien search to determine the roots of }{for  (x) and )( )0()1( −−−∈Λ αασ LBxx  
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If ixx −== ασ  somefor  0)( an error has occurred in symbol i, and the error magnitude 
is given by: 

i
i ax

xx
x

e −=
Λ⋅

=   where
)()('

)(
σ

ω
 

 
If ixx −==Λ α somefor  0)(  an erasure has occurred in symbol i, and the erasure 
magnitude is given by: 

i
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4.2 Interface 
module decoder ( 
                // INPUTS 
    clock, 
    clocken,    // an active high clock enable 
    reset, 
    load,       // Must be asserted to mark the first symbol of the codeword. 
    erasurein,  // A one indicates the symbol was an erasure. 
    din,        // The symbols of the codeword to be decoded. 
    maxerasures,// The maximum number of erasure we will tolerate 
                   before declaring uncorrectable. 
 
                // OUTPUTS 
 
    active,     // Asserted (high) during the output of the corrected codeword. 
    sob,        // Asserted (high) to mark the first symbol of the corrected codeword. 
    eob,        // Asserted (high) to mark the last symbol of the corrected codeword. 
    dout,       // The symbols of the corrected codeword. 
    status,     // 0 - correctable, no errors, no erasures. 
                // 1 - correctable, no errors, some erasures. 
                // 2 - correctable, some errors, no erasures. 
                // 3 - correctable, some errors, some erasures. 
                // 4 - uncorrectable, no erasures. 
                // 5 - uncorrectable, some erasures. 
                // 6 - uncorrectable, special case 1.  
                // 7 - uncorrectable, special case 2. 
    nerrors,    // The number of errors (undefined if status >= 4) 
    nerasures   // The number of erasures. 
); 
 
The system clock has the rising edge as the active edge. 
 
The reset is an active high synchronous reset, and must be asserted for a minimum of 
one clock period. 
 
To load a B symbol codeword into the decoder, the load signal must be asserted with 
the first symbol of the codeword, and then de-asserted as the remaining B-1 symbols 
of the codeword are clocked in over successive clock cycles. 
 
Stall cycles may be inserted at any point by taking clocken low. This freezes the state 
of the whole decoder, and is equivalent to gating the clock. 
 
The latency within the decoder is approximately two codewords, and some time later 
the first symbol of the corrected codeword will be output on dout. The remaining 
symbols of the corrected codeword are output on dout over successive clock cycles. 
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Active is asserted (high) for the B cycles during which the corrected codeword is 
being output. Sob is asserted (high) with the first symbol of the corrected codeword. 
Eob is asserted (high) with the last symbol of the corrected codeword. 
 
The throughput of the decoder is such that it can output back-to-back corrected 
codewords without any idle cycles in between. 
 
The timing diagram for a RS(160,128,T=16) code is shown below in Figure 4. 

0 1 158 4 140

clocken

load

clock

din

B=160
T=16

159 0 1 142 143 144 145 159 0 1 2 3 141 142 143 144 145

0 1 2117 222 158 159

sob

active

eob

dout 18 19 20 0 1

status

nerrors

nerasures

stall

306 cycles (includes one stall cycle)

305 cycles

sample status on eob

 

Figure 4 - Decoder timing diagram 

For a RS(160, 128, T=16) code the actual latency of the encoder (load active to sob 
active) is 305 clock cycles (i.e. the equivalent of 305 pipeline register stages), 
assuming clocken is held high. Any stall cycles add directly to the latency 
 
The status signals indicate whether or not the decoder was able to correct the 
codeword. 
 
In the case where the codeword was correctable (status 0, 1, 2, 3) nerrors and 
nerasures indicate the numbers of errors and erasures present. 
 
In the case where the codeword was uncorrectable (status 4, 5, 6, 7) nerrors is 
undefined and nerasures indicates the number of erasures present. The codeword 
(just) output in this case is not guaranteed even to be a valid codeword, and should be 
treated as undefined. 
 
The values of status, nerrors and nerasures should be sampled on the clock edge that 
occurs when eob is asserted. 
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The maxerasures input allows the maximum number of erasures that will be tolerated 
to be reduced (below the theoretical maximum of 2T). The rational for doing this is 
that it reduces the probability of a corrupted codeword with a large number of 
erasures miscorrecting. 
 
The decoder uses the following basic status codes: 
 
0 Correctable, no errors, no erasures. 
1  Correctable, no errors, some erasures. 
2 Correctable, some errors, no erasures. 
3 Correctable, some errors, some erasures. 
4 Uncorrectable, no erasures. 
5 Uncorrectable, some erasures. 
 
Due to the internal architecture of the decoder, the status code is generated after the 
decoder has attempted to correct the corrupted codeword, and is only available when 
the final symbol of the corrected codeword is being output. This minimises latency. 
Thus, regardless of whether the error pattern is correctable, or not, the decoder will 
always attempt to correct it.  
 
As an additional check, the decoder re-calculates the syndromes over each sequence 
of symbols output by the decoder. This check is performed by the final pipeline stage 
within the decoder, called the monitor block. Two additional status codes are 
introduced by this block, both of which should be treated as uncorrectable: 
 
6 Uncorrectable, special case 1. This represents the case where the status code 
going in to the monitor block was 0 to 3 (i.e. correctable), yet for some reason the 
syndrome of the sequence of symbols output by the decoder was non-zero, indicating 
an invalid codeword. This could indicate a design error in the decoder. It could also 
indicate that hardware is not operating reliably, say due to incorrect power supply 
voltages, or excessive system noise. 
 
7 Uncorrectable, special case 2. This represents the case where the status code 
going in to the monitor block was 4 or 5 (i.e. uncorrectable), yet for some reason the 
syndrome of the sequence of symbols output by the decoder was zero, indicating a 
valid codeword. This event does occur in practise, particularly if the weight of the 
error pattern is 2T + 1 (i.e. just above what is correctable). Usually the codeword, 
whilst valid, is the wrong one. The only reason we expose this behaviour externally is 
because it may help us to design more effective decoders in the future. 
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4.3 Block diagram 
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Figure 5 - Decoder block diagram 
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4.4 Syndrome block 

4.4.1 Algorithm 
The syndrome block calculates the syndromes of the codeword to be decoded. 
 
The symbols of the codeword form the coefficients of a polynomial, where the first 
symbol received is dB-1 and the last symbol received is d0: 

1
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3
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The syndromes are obtained by evaluating this polynomial at the roots of the 
generator polynomial. The generator polynomial has 2T distinct roots (α, α2, α3,  …, 
α2T), therefore there are 2T syndromes to be calculated. 
 
The calculation of each syndrome is performed recursively, using Horner’s rule: 
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The order of evaluation of this recursive calculation requires the coefficients to be 
available in the order dB-1 first, through to d0 last. This matches perfectly the 
transmission order of symbols into the decoder. 

4.4.2 Block diagram 
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Figure 6 - Syndrome block diagram 

4.4.3 Operation 
The state table for the syndrome block is shown below: 
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state count comment 
S_IDLE 0 Stay in this state until load 

asserted. 
S_INIT 0 In this state, load dB-1 into each 

syndrome register. 
S_COUNT 1 
S_COUNT 2 
… … 
S_COUNT B – 2 

Stay in this state for B – 2 cycles 
consuming symbols dB-2 to d1 and 
performing the recursive 
calculation. 

S_DONE B – 1  Consume the last symbol, d0, and 
perform the last iteration of the 
recursive calculation. 
If decoding back-to-back 
codewords, move straight back to 
S_INIT, else S_IDLE. 

S_INIT or 
S_IDLE 

0 etc 

Table 2 - State table for syndrome block 

The latency of this block (assuming no stall cycles) is B + 2 cycles. 

4.5 Erasurelist block 

4.5.1 Algorithm 
The erasurelist block contains a FIFO like structure to maintain a list of up to 2T 
erasure locations. 
 
If the first symbol of the codeword is as an erasure, a value of )1( −− Bα is queued in the 
FIFO. If the next symbol is an erasure, )2( −− Bα queued in the FIFO etc. 
 
In addition to storing the erasure locations, the erasurelist block pre-computes the 
following values. Let the total number of erasures in a codeword be J, then: 

otherwise 0 
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The v1, v2 and v3 values are used for the Forney block, the v4 value is used by the 
Euclid block. 
 
For details of L and N, see section 4.7.3. 
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4.5.2 Block diagram  
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Figure 7 - Erasurelist block diagram 

4.5.3 Operation 
The state table for the syndrome block is shown below: 
 

state count alphai comment 
EL_IDLE 0 α-(B-1) Stay in this state until 

load asserted. 
EL_COUNTING 0 α-(B-1) 
EL_COUNTING 1 α-(B-2) 
… … … 
EL_COUNTING B – 2 α-(1) 
EL_COUNTING B – 1 α-(0) 

Stay in this state for B 
cycles consuming 
erasure flags eB-1 to e0.  

EL_IDLE or 
EL_COUNTING 

0 α-(B-1) etc 

Table 3 - State table for erasurelist block 
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The latency of this block (assuming no stall cycles) is B + 2 cycles. 

4.6 Expander block 

4.6.1 Algorithm 
The purpose of this block is to calculate: 
 
a) The erasure locator polynomial: 

)())()(()( 1210 −−−−− ++++=Λ Jvvvv xxxxx αααα L  
where the set of iv−α represents the locations of J erasures where TJ 20 <≤ . 

 
b) The modified syndrome polynomial: 

)()()( xxSxT Λ⋅=  
where S(x) is the syndrome polynomial. 

 
In both cases, the same basic operation is used: 

)())()(()()( 1210 −−−−− ++++⋅= Jvvvv xxxxxpolyinxpolyout αααα L  
 
To calculate T(x) the initial value loaded into polyin(x) is S(x). 
 
To calculate S(x) the initial value loaded into polyin(x) is 1. 



 
Design of a Synthesisable Reed-Solomon ECC Core 

 26 5/24/2001 10:02 AM 
  

4.6.2 Block diagram  

st
at

e
m

ac
hi

ne
co

un
te

r

load

= 2T - 1

X_IDLE
X_PASS1
X_RELOAD
X_PASS2

state

X_PASS1
done

clock

reset

alphai

polyout

0

sel

0

1

2

3

0

sel

0

1

2

3

0

sel

0

1

2

3

1

sel

0

1

2

3

0

sel

0

1

2

3

polyin

sel: condition:
0: X_IDLE && load
1: X_RELOAD
2: (X_PASS1 ||  X_PASS2) && (alphai != 0)
3: (X_PASS1 ||  X_PASS2) && (alphai == 0)

0

1

X_IDLE |
X_PASS1

2T-1 2T-2 2 1 0

 
Figure 8 - Expander block diagram 

4.6.3 Operation 
The same hardware is used (time multiplexed) to generate both T(x) and Λ(x). 
 
The state table for the expander block is shown below: 
 

state count comment 
X_IDLE 0 Load the polynomial register with 

polyin when load asserted, them 
move on. 

X_PASS1 0 
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X_PASS1 1 
… … 
X_PASS1 2T – 1 

Stay in this state for 2T cycles 
consuming up to 2T erasure 
locations. 

X_RELOAD 0 Reload polynomial register with 1. 
X_PASS2 0 
X_PASS2 1 
… … 
X_PASS2 2T - 1 

Stay in this state for 2T cycles 
consuming up to 2T erasure 
locations. 

X_IDLE 0 etc 

Table 4 - State table for expander block 

In the first pass the polynomial register is initialised with S(x), and over the next 2T 
clock cycles the erasure locations ivα are consumed. At the end of 2T cycles, the 
polynomial register holds T(x). Done is asserted at this point to indicate the cycle in 
which T(x) is available. 
 
In the second pass the polynomial register is initialised with 1 and over the next 2T 
clock cycles the erasure locations ivα are consumed. At the end of 2T cycles, the 
polynomial register holds Λ(x). This value is held until load is asserted again. 
 
The erasure locations are stored in a shift register for re-use in the second pass, so that 
they only need inputting once into the block. A value of zero is an invalid erasure 
location, and so this is used as padding if there J < 2T. 
 
The latency of this block (assuming no stall cycles) is 2T+1 cycles. 

4.7 Euclid block 

4.7.1 Algorithm 
The design of this block is heavily leveraged from Gadiel Seroussi’s work. For further 
details see [4] pages 205-241. Some of the diagrams are reproduced here to aid 
understanding of our implementation. 
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ωB(x) σB(x)
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Figure 9 - Data structure for Euclidean computation 

This data structure efficiently holds four polynomials. The maximum degree of each 
polynomial is 2T (so it takes up 2T+1 register slots). However, the algorithm is such 
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that as the degree of σi(x) increases, so the degree of  ωi(x) decreases. Thus it is 
possible to pack both polynomials into 2T+2 register slots. 
 
The following procedure describes the computation performed. Again, in [4] there are 
many pages of mathematical proof and explanation. 
 
Procedure E2: Extended Euclidean algorithm (modified version) 
 

1.  Initialize   
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At all times maintain )(deg)(deg xx BT ωωδ −= . 
 
Initially 1=δ  

 
2. Repeat 2T – J times (where J is the number of erasures): 

 
a. set 

µT := left most (leading) coefficient of ωT(x) 
µB:= left most (leading) coefficient of ωB(x) 
 

b. if µB ≠ 0 and δ > 0 (i.e. the bottom comma is to the left of the top 
comma), then 

swap RTOP and RBOT 
swap µT and µB 
 

c. if µB ≠ 0, then set 
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σµσµσ

ωµωµω
δ

δ

−=
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d. shift RBOT (and its comma) one position to the left.  

 
3. output ωB(x) as ω(x) and σT(x) as σ(x). 
 

This differs from Gadiel’s procedure in the following aspects: 
i. We initialise with T(x) rather than S(x) 

ii. The number of iterations is reduced from 2T to 2T - J. 
iii. The sign of δ is reversed (this is purely cosmetic).  

 
In Gadiel’s implementation, the data structure for the Euclidean computation is 
exactly 2T+2 slots wide and there are O(2T) functional units (referred to as ST cells). 
Each ST cell contains an adder and a multiplier.  A basic iteration of procedure E2 can 
be started every three cycles. The multiplier is busy in two of these cycles, and the 
third is overhead. A new Euclidean computation can be started every O(6T) cycles, 
and the overall latency is O(12T) cycles 
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4.7.2 Basic cell design 
The goal for our basic cell design is to maximize throughput and minimize latency. 
Consequently, our basic cell design contains an adder and two multipliers. With 
O(2T) of these basic cells, an iteration of procedure E2 can be started every cycle, 
which results in a throughput and latency of O(2T) cycles. Our basic cell is illustrated 
in Figure 10. 
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Figure 10 - Euclid cell design 

This purely combinatorial logic handles steps (a), (b) and (c) in the procedure E2 
simultaneously.  
 
The following signals are passed into this logic: 
− top – the value of the top polynomial coefficient 
− ctop –flag to indicate whether the coefficient is left (0) or right (1) of the comma 
− bot – the value of the bottom polynomial coefficient 
− cbot –flag to indicate whether the coefficient is left (0) or right (1) of the comma 
− ut – corresponds to µT at the start of step (a), prior to any swapping. 
− ub – corresponds to µB at the start of step (a), prior to any swapping. 
− swap – the condition tested in step (b), set to one if µB ≠ 0 and δ > 0 prior to any 

swapping. 
− ubnequal0 – set to one if µB ≠ 0, prior to any swapping 
− utnequal0 – set to one if µT ≠ 0, prior to any swapping 
 
The main function of the cell is to implement the computation of step (c): 

)()(:)(

)()(:)(

xxxx

xxxx

BBTTT

TBBTB

σµσµσ

ωµωµω
δ

δ

−=

−=
 

 
Let i represent the index number the slot in RTOP and RBOT in Figure 9 (with an 
index of 0 being at the far right hand side). 
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Let topi be the value stored in slot i of RTOP. 
 
Let boti be the value stored in slot i of RBOT. 
 
We define the following shorthand notation:  

iBi

iTi

iBi

iTi

botd

topc
topb
bota

⋅=

⋅=
⋅=
⋅=

µ

µ
µ
µ

 

 
Given the layout of the polynomials in the registers, multiplication factor δx is 
obtained trivially due to the alignment of the polynomials. Although procedure E2 
specifies subtraction, this the same as addition in a Galois field, and so )( ii ba − is the 
same as )( ii ab − .  
 
Consider the case where no swap occurs: 
 

botm+1

topm+3

am+4 -
b

m+4

am+3 -
b

m+3
am+2

cm+2
cm+1 -
dm+1

cm -
dm

topm+4 topm+3 topm+2 topm+1 topm

step
a,b,c

step d

botm+4 botm+3 botm+2 botm+1 botm

topm+4

botm

 
Figure 11 - Euclid cell operation - no swap occurs 

From this diagram it is possible to verify that the logic in Figure 10 does indeed 
implement the correct logic: 

 
position m+4 and m+3 m+2 m + 1 and m 
ctop 0 1 1 
cbot 0 0 1 
swap 0 0 0 
op1 ut ut ut 
op2 bot top top 
op3 ub ut ub 
op4 top bot bot 
prod1 ut . bot = a ut . top = c ut . top = c 
prod2 ub . top = b ut . bot = a ub . bot = d  
sum a + b a + c c + d 
newtop top prod1 = c sum = c + d 
newbot sum = a + b prod2 = a bot  

 
Now consider the case where a swap occurs: 
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topm+1

botm+3

bm+4 -
a

m+4

bm+3 -
a
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dm+2
dm+1 -
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dm -
cm

topm+4 topm+3 topm+2 topm+1 topm

step
a,b,c

step d

botm+4 botm+3 botm+2 botm+1 botm

botm+4
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Figure 12 - Euclid cell operation – swap occurs 

From this diagram it is possible to verify that the logic in Figure 10 does indeed 
implement the correct logic: 

 
position m+4 and m+3 m+2 m + 1 and m 
ctop 0 0 1 
cbot 0 1 1 
swap 1 1 1 
op1 ut ub ut 
op2 bot bot top 
op3 ub ub ub 
op4 top top bot 
prod1 ut . bot = a ub . bot = d ut . top = c 
prod2 ub . top = b ub . top = b ub . bot = d  
sum a + b b + d c + d 
newtop bot prod1 = d sum = c + d 
newbot sum =  a + b prod2 = b top  

 
One final complication is that the computation in step (c) of procedure E2 is 
conditional on (µB ≠ 0) after the swap. This is achieved by adding an additional load 
condition to the final multiplexor used to generate newtop and newtop. In our design 
the combinatorial cell handles steps (a), (b) and (c) simultaneously, and so this load 
condition (logically) expands to: 

)0()0( ≠⋅+≠⋅= TB swapswapload µµ  
 
For convenience, define the following: 

)0(

)0(
)0(

>=

≠=
≠=

δ

µ
µ

c

b
a

B

T

 

 
Then, 

)(

)()(

accb

acbcbbb

acbbcbload

cbswap

cbswap

⋅+⋅=

⋅⋅+⋅+⋅=

⋅⋅+⋅+=

+=

⋅=
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This can be simplified further by noting that µT is never zero. The initial value for µT 
is 1 because T

T xx 2)( =ω . The only time the value of µT changes is following a swap, 
when it is updated from µB, which will be non-zero or the swap would not happen. 
Thus, substituting a = 1: 

b
ccbload

=
⋅+⋅= )1(  

 
For historic reasons1 the condition we actually use for load is: 

b
acbb

swapload TB

=
⋅⋅+=

≠⋅+≠= )0()0( µµ
 

The second part of this expression is actually redundant, but does not affect the logical 
operation of the system. As the design is now frozen, and there is no logical problem, 
we have not changed this. 

4.7.3 Cell sharing 
If the throughput of the Euclidean computation O(2T) is less than the code length B, 
then the decoder throughput will not be limited by the Euclid stage. In certain 
applications, where overall latency is not critical, it may be advantageous to allow the 
Euclidean computation be spread over additional cycles, if this reduces the 
implementation size. This can be achieved by allowing a basic cell to be shared 
between multiple slots in the data structure. For example, by sharing a cell between 
two slots, the total number of cells required is halved, and the computation time and 
latency will increase to O(4T). 
 
In general, procedure E2 requires )8()222( 2TOTTO =×× multiplications, regardless 
of how it is implemented. Since our basic cell contains two multipliers, a 
configuration with N basic cells will complete the computation in )4( 2 NTO cycles. 
 
The number of computation cells can be configured at synthesis time by the synthesis 
parameter N. There are several constraints on N, but the main one is that it must be a 
factor of the width of the data structure. 
 
The width of the data structure is controlled by a second synthesis parameter, L, 
where L ≥ 2T+2. If L = 2T+2, the data structure is identical to that shown in Figure 9. 
If L > 2T+2, then some redundant cells are added. The configuration used for the 
RS(160, 128, T=16) code is shown in Figure 13. 

                                                 
1 An oversight that only came to light as I was writing this documentation. 
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degWtop = 2T+1 = 33

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

T31T30T29T28T27T26T25T24T23T22T21T20T19T18T17T16 T15T14T13T12T11T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0 0 0 0 0

degWbot = 2T = 32

δ = 1

2
redundant

slots
Example:
L = 36
N = 12
T = 16

cell1 cellcell cell cellcell cell cellcell cell cell cellN

L = 36 slots

 
Figure 13 - Example of the modified Euclidean data structure 

It turns out that it is convenient to locate the redundant cells between the polynomials, 
rather than at either end. This means their locations move as the computation 
progresses. However, this does not affect the results. 
 
The initialisation values for the top and bottom registers are also shown in Figure 13. 
 
During the computation following variables are maintained: 

degWtop – the space occupied by ωT(x) (initially 2T+1) 
degWbot – the space occupied by ωB(x) (initially 2T) 

 
At the end of the computation, ωB(x) is output as ω(x) and σT(x) is output as σ(x). The 
degrees of these polynomials are calculated as follows: 
 degW = degWbot 
 degO = 2T + 2 – degWtop 
  
At a register-transfer level, things get more involved. There have been examples in the 
literature of similar hardware sharing schemes, but all of these required an additional 
overhead in terms of multiplexors to route the data values appropriately. In our 
implementation we have managed to eliminate the overhead, by forming ringlets of 
registers. Data values circulate around these ringlets, and the computation cell is 
connected to a fixed point. This is illustrated in Figure 14. 
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0 00 10 00 01 00 0

T1 0T0 0T5 T3T4 T2T9 T7T8 T6

cell
0

cell
2

cell
1

0

 
Figure 14 - Implementation of euclidean computation  

This example is for L=12 and N=3; each cell is shared between four slots. The shaded 
multiplexors are required to load the initialisation values into the registers. Where the 
initialisation values are constants, these multiplexors will be optimised. The other 
three multiplexors and three additional registers implement step (d) of procedure E2, 
effectively shifting the bottom registers on position left at the end of an iteration. 

4.7.4 Operation 
Procedure E2 requires basic 2T-J iterations, where J indicates the number of erasures. 
In our implementation each iteration is spread over NL clock cycles to reduce the 
number of basic cells from L to N. Thus, the number of cycles to complete the 
calculation is NLJT ×− )2( .  
 
The state sequencing of the computation varies depending on L, N, T and J, but there 
are two basic cases to consider: 
 

i. The trivial case, where there are (J=2T) erasures: 
 

state count1 count2 done degO degW fail 
E_IDLE 0 0 0 - - - 
E_IDLE 0 0 1 1 2T 0 

Table 5 - State table for euclid block (trivial case) 

ii. The non-trivial case, where there are (J < 2T) erasures: 
 
(this example uses L=36, N=12, T=16 and J=7) 
 
state count1 count2 done degO degW fail 
E_IDLE 0 0 0 - - - 
E_CALCING 0 0 0 - - - 
E_CALCING 1 1 0 - - - 
E_CALCING 2 2 0 - - - 
E_CALCING 3 0 0 - - - 
E_CALCING 4 1 0 - - - 



 
Design of a Synthesisable Reed-Solomon ECC Core 

 35 5/24/2001 10:02 AM 
  

E_CALCING 5 2 0 - - - 
… … … … … … … 
E_CALCING 72 0 0 - - - 
E_CALCING 73 1 0 - - - 
E_CALCING 74 2 0 - - - 
E_IDLE 0 0 1 2T+2-

degWtop 
degWbot (degWbot 

>= 
degWtop) 

Table 6 - State table for euclid block (non-trivial case) 

4.8 Delay block 
The latency through the Euclid block is (2T-J)L/N cycles, which varies depending on 
the number of erasures. To ensure the decoder as a whole has constant latency, the 
next block (the scaler) is triggered 1)2( +NLT cycles after the Euclidean 
computation starts, rather than on its completion. This achieved using the delay block. 

4.9 Scaler block 

4.9.1 Algorithm 
The roots of the error locator polynomial σ(x) indicate the error locations. An 
exhaustive search is used to determine these roots. This procedure is known as the 
Chien search. 
 
The convention with Reed-Solomon codes is that the on-the-wire ordering is such that 
the first symbol represents the coefficient of the xB-1 term, and the last symbol 
represents the coefficient of the x0 term. It is advantageous to synchronise the Chien 
search with this transmission order, since this minimises buffering within the decoder 
and reduces overall latency. 
 
The Chien search involves evaluating σ(x) for }{ )0()1( −−−∈ αα LBx . 
 
For a full length code, B = 2W-1, and so the first location checked is 

ααααα ==== −−−−−−−−− )1)12(()12()1)12(()1( WWWBx  
 
The next location would be: 

2)2)12(()12()2)12(()2( ααααα ==== −−−−−−−−− WWWBx  
 
and so on. The classic approach to implementing the Chien search uses the following: 
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Strictly speaking, )(xσ can be of degree at most T, and so there is some redundancy 
here. However, the other polynomials )(  )( xandx Λω can be of degree 2T, and since 
the scaler block is shared, we assume any of the polynomials can be of degree 2T. 
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This computation can be implemented by 2T+1 stages, where each stage includes a 
register, a constant multiplier and an adder, connected as shown in Figure 15. 

αi

0

load

1σi

from
stage

i-1

to
stage

i+1

stage i
 

Figure 15 - Polynomial evaluation cell 

The registers are initialised with the coefficients of σ(x). Over successive clock 
cycles, the ith coefficient is repeatedly multiplied by iα , and the results summed. 
 
One clock cycle after loading, the sum will be )(ασ ; this will be zero if there is an 
error in the first symbol of the codeword. In general, after N clocks, the sum will be 

)( Nασ ; this will be zero if there is an error in the Nth symbol of the codeword.  
 
So far we have described the operation for full-length codes, where .12 −= wB In 
general, we also need to handle shortened codes, where .12 −< wB  
 
The above hardware still works in this case, but needs BW −2 clock cycles following 
initialisation before the first useful result )( )1( −− Bασ  is obtained. This is effectively 
dead time, and limits the overall throughput of the decoder, preventing it from 
decoding back-to-back codewords.  Note that even in the ideal case of a full-length 
code, there is one cycle of dead time. This is because the initialisation value is )( 0ασ  
which does not correspond to a location within the codeword. 
 
For a shortened-code, the first location checked should be 

BBB WW

x −−−−−− === 2)1()12()1( αααα  
 
The next location would be: 

12)2()12()2( +−−−−−− === BBB WW

x αααα  
 
and so on. 
 
To eliminate the dead time, we need to scale the coefficients of )(xσ to effectively 
allow the Chien search to start immediately at position B-1. This scaling is 
straightforward: the ith coefficient of )(xσ needs scaling by iBW )2( −α . A bank of 2T 
constant multipliers can achieve this in one cycle. 
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4.9.2 Block diagram  
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Figure 16 - Polynomial scaler block diagram 

4.9.3 Operation 
The scaler block implements the polynomial scaling described above. There are three 
polynomials that need scaling. These are the error locator polynomial )(xσ and the 
errata evaluator polynomial )(xω  from the Euclid block, and the erasure locator 
polynomial )(xΛ  from the Polynomial Expander block. Once start is asserted, these 
are processed over successive clock cycles. The three done signals indicate to 
successive blocks when each scaled polynomial (and its true degree) is available. 
These signals will be skew by one cycle with respect to each other. 
 
The format of the polynomials )(xσ and )(xω from the Euclid block is somewhat 
strange, due to the layout of registers within that block. The Ocomb and Wcomb 
functions in the scaler serve to map )(xσ and )(xω to a standard format, illustrated in 
Figure 17. Note that the )(xΛ polynomial does not require any reformatting. 
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0 ω K 0 1 X 1 X0ω 1 ω 0 ......

1 σ J10 X 0 X 1σ 1σ 0... ...

ω K 0 0ω 1 ω 0

σ J

... ...

... σ 1 σ 0 0 0...

Ocomb

Wcomb

0(2T+1)(W+1)-1

0(2T+1)(W)-1

0(2T+1)(W+1)-1

0(2T+1)(W)-1

 
Figure 17 - Reformatting of polynomials in scaler 

Note that the alignment of σ(x) and ω(x) is such that the polynomials are scaled. More 
specifically, if σ(x) is of degree J, then the scale factor is x2T-J. Similarly, the scale 
factor for ω(x) is x2T-K. These scale factors are compensated for in the Forney block. 
 
Since the result of the Euclid block is only valid for one cycle, the scaler block 
includes registers to capture the result when available. These are loaded when the load 
signal is asserted. The load signal is driven from the done signal from the Euclid 
block. 
 
The last function performed by the scaler block is to calculate the true degrees of the 
polynomials, since the results of the Euclid block may include leading zeros. The 
number of leading zeros is counted, using a priority encoder, and this value is 
subtracted from the degree output by the Euclid block. The true degrees of the 
polynomials are used by the Forney block to detect uncorrectable error patterns. 
 
The latency of this block (assuming no stall cycles) is 2 cycles. 

4.10 Polynomial evaluation block 

4.10.1 Algorithm 
Polynomial evaluation is part of the Chien search, as described in section 4.9.1. 
 
We sum the odd and even terms separately, for reasons described in section 4.11. 
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4.10.2 Block diagram  
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Figure 18 - Polynomial evaluation block diagram 

4.10.3 Operation 
The state table for the polyeval block is shown below:  
 

state count comment 
F_IDLE x Stay in this state until load 

asserted. 
F_COUNTING 0 
F_COUNTING 1 
… … 
F_COUNTING B - 1 

Stay in this state for B cycles 
while Chien search is being 
performed. Polynomial is 
evaluated at B different values. 

F_IDLE or 
F_COUNTING 

x or 0 Loop back to f_counting if load 
asserted immediately, else return 
to f_idle. 

Table 7 - State table for polynomial evaluation block  

The latency of this block (assuming no stall cycles) is 2 cycles. 
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4.11 Forney block 

4.11.1 Algorithm 
The Chien search involves simply evaluating σ(x), ω(x) and Λ(x) for 

){ )0()1( −−−∈ αα LBx . From these values, the Forney equations are used to actually 
calculate the error magnitudes. 
 
The general form of the Forney equations is: 
 
If ixx −== ασ  somefor  0)( an error has occurred in symbol i, and the error magnitude 
is given by: 

i
i ax

xx
x

e −=
Λ⋅

= for  
)()('

)(
σ

ω
 

 
If ixx −==Λ α somefor  0)(  an erasure has occurred in symbol i, and the erasure 
magnitude is given by: 

i
i ax
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E −=
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ω
 

 
LEMMA 1: If 0)( =xσ then it is possible to obtain )(' xxσ  by summing either the 
odd or even power terms of )(xσ . 
 
PROOF: 
 
We can write )(xσ as: 
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The derivative of σ(x) is: 
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Because we are working in a Galois field, the following hold true:  
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Therefore, σ’(x) can be simplified to: 

1
2

3
22

12)(' σσσσ +++= −
− xxx T

T L  
 
and so, 

xxxxx T
T 1

3
3

12
12)(' σσσσ +++= −

− L  
 
Thus, we can obtain )(' xxσ by simply summing the odd terms of )(xσ . 
 
Observe also that we are only interested in )(' xσ where 0)( =xσ . This means that the 
sum of the odd terms must equal the sum of the even terms. 
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Hence, we can also obtain )(' xxσ by simply summing the even terms of )(xσ . 
 
LEMMA 2: The scale factors resulting from the misalignment the polynomials σ(x) 
and ω(x) when loaded into the polynomial evaluation block can be easily determined: 
 
PROOF: 
 
At the start of the Euclidean computation: 
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At the end of the Euclidean computation, the final degrees of the polynomials are: 
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Each iteration of the computation can only increase dT or dB by one, it follows that 
after 2t - J iterations: 
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Thus, at the end of the computation: 

T

T

T

T

B

B

d
xx

Jd
dJTT

dT
xx

=
=

−+=
−−−−=

−−=
=

)(deg)(deg

1
)2(12

12
)(deg)(deg

σσ

ωω

 

  
When polynomials σ(x) and ω(x) are evaluated, we avoid shifting them to the correct 
position, hence a scale factor is included. More specifically, if the degree of the 
polynomial is d, then the scale factor is x2T-d. Therefore, 
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Also, as  
 
 
Using the results of Lemma 1 and Lemma 2 we can re-write the Forney equations: 
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and similarly: 
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These equations are directly implemented. 
 
The other function implemented in the Forney block is the detection of uncorrectable 
error patterns. 
 
Let nerasures be the number of symbols declared as erasures. 
 
Let nerrors be the number of distinct roots of }{for  )( )0()1( −−−∈ αασ LBxx   
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If any of the following conditions arise, then the error pattern is declared 
uncorrectable: 
 
• The Euclidean computation terminated mid-division (i.e. bottom comma is aligned 

with, or to the right of, the top comma). 
• nerasures exceeds the decoder maxerasures input.  
• nerrors differs from the true degree of )(xσ .  
• nerasures + 2 * nerrors > 2T 
• A root of )(xσ co-incides with a root of )(xΛ (i.e. the same location is both an 

error and an erasure) 
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4.11.2 Block diagram  
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Figure 19 - Forney block diagram 

4.11.3 Operation 
This block is implemented as a heavily pipelined datapath, driven by the three 
polynomial evaluation blocks for σ(x), Λ(x) and ω(x). There is one cycle skew 
between each of these blocks, due to the scaler, thus the results feed into the datapath 
at different stages. 
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The first multiplier corresponds to the multiplication on the denominator of the 
Fourney equations. The arguments are selected according to whether this symbol is an 
error or an erasure (it cannot be both). This is followed by an inversion and then two 
further multiplications, one to multiply in ω(x) and the other to multiply in the 
correction factor xJ. The final multiplexor ensures that a zero error value is output 
when there is no error or erasure. 
 
The erasurelist block pre-computes the following values (for J erasures) 

JB

J

v

v

Jv

)1(3

2

1

−−=

=

=

α

α  

 
The correction factor v_factor2 is calculated recursively, the sequence being: 

1,,,,, 2)3()2()1( JJJBJBJB −−−−−−−− ααααα L  
 
It can be seen by inspection that this corresponds to }{for  -(0))1( αα L−−∈ BJ xx . 
 
Some brief comments on the timing constraints: 
 
The signals v1, v2, v3 are generated by the erasurelist block and change when it’s 
done signal is asserted. They are then held for a minimum of B cycles. The Forney 
block samples them on sob1, thus: 

Constraint 1:  erasurelist.done ⇒ forney.sob1 ≤ B cycles 
   (2T + 1) + (2TL/N + 1) + 4 ≤ B cycles 

 
The signals degO3, fail are generated by the Euclid block and change when it’s done 
signal is asserted. They are them held for a minimum of B cycles. The Forney block 
samples them on sob3, thus: 

Constraint 2:   Euclid.done ⇒ forney.sob3 ≤ B cycles. 
   (2TL/N + 1) + 6 ≤ B cycles 

 
Generally constraint 1 will be the limiting factor. 
 
The nerasures, nerrors and status outputs of the Forney block change on eob3, and 
thus are valid 3 cycles prior to the eob output. They are then held for a minimum of B 
cycles. 
 
The latency of this block (assuming no stall cycles) is 6 cycles. 

4.12 Symbol delay block 
This block is trivial – it introduces a delay on the symbol data, to compensate for the 
delay through the previous blocks in the decoder. It is implemented as a symbol-wide 
shift register.   
 
This needs to include: 

− B+2 stages to compensate for the syndrome block 
− 2T+1 stages to compensate for the polynomial expander block 
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− (2TL/N)+1 stages to compensate for the Euclid/delay blocks 
− 2 stages to compensate for the scaler block 
− 2 stages to compensate for the polynomial evaluation block 
− 6 stages to compensate for the Forney block 

 
Totalling these up yields B+2T+(2TL/N)+14 stages. 
 
For B=160, T=16. L=36 and N=12 this works out at 302 stages. 

4.13 Error correction block 
This block is trivial – error correction is done by XORing the delayed input data with 
the error output of the Forney block. 
 
The latency of this block (assuming no stall cycles) is 1 cycle. 

4.14 Monitor block 

4.14.1 Algorithm 
As an additional check, the decoder re-calculates the syndromes over each sequence 
of symbols output by the decoder. This check is performed by the final pipeline stage 
within the decoder, called the monitor block. 
 
If the status code was 0 to 3, the sequence of symbols output by the decoder should 
always correspond to a valid codeword (i.e. the syndromes will be zero). If this is not 
the case, the status code is replaced with 6. 
 
If the status code was 4 or 5, the sequence of symbols output by the decoder is 
unlikely to be a valid codeword (i.e. one or more of the syndromes should be non-
zero). If this is not the case, the status code is replaced with 7. 
 
The status codes 6 and 7 should always be treated as uncorrectable. 
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4.14.2 Block diagram  
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Figure 20 - Monitor block diagram 

4.14.3 Operation 
This block is implemented as a pipelined datapath. The status code from the Forney 
block is modified as follows: 
 

if (eob1 == 1) 
   if ((statusin < 4) && (syndrome1 != 0)) 
      status <= 6; 
   else if ((statusin >= 4) && (syndrome1 == 0)) 
      status <= 7; 
   else 
      status <= statusin; 

 
The latency of this block (assuming no stall cycles) is 2 cycles. 
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5 Synthesis 
5.1 Source file layout 
 
ReadMe 

rs/ReadMe 
 
Parameter configuration 

rs/params.v 
 
Verilog source files 

rs/encoder.v 
rs/decoder.v 
rs/delay.v 
rs/erasurelist.v 
rs/euclid.v 
rs/expander.v 
rs/fourney.v 
rs/messagedata 
rs/monitor.v 
rs/polyeval.v 
rs/scaler.v 
rs/symboldelay.v 
rs/syndrome.v 
rs/EuclidCell.v 
rs/EuclidCell_fn.v 
rs/EuclidCell_fn_body.v 
rs/GFAdd.v 
rs/GFAdd_fn.v 
rs/GFAdd_fn_body.v 
rs/GFInverse.v 
rs/GFInverse_fn.v 
rs/GFInverse_fn_body.v 
rs/GFMult.v 
rs/GFMult_fn.v 
rs/GFMult_fn_body.v 
rs/GFPtoT_fn.v 

 
Synthesis control scripts 

rs/RUNSYN  
rs/reedsolomon.script 
 

Galois arithmetic synthetic library 
galois/GALOIS_GFAdd_mod.v 
galois/GALOIS_GFMult_mod.v 
galois/analyze.script 
galois/galois.sl 
galois/galois.sldb 

5.2 Configuring the design 
The design configuration is contained in the params.v file. 

5.2.1 Parameters 
The following parameters define the specific Reed-Solomon code: 

• T - The code error correction capability. 
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• B - The code length. 
• WIDTH - The width (in bits) of a code symbol. 
• PRIMITIVE - The primitive field generator polynomial for the code. The 

binary representation of this number is used to form the field generator 
polynomial. 

• GENERATOR - The code generator polynomial whose first root must be α. 
This value can be calculated using the Generate.c program. 

 
The following parameters configure the layout of the registers in the Euclid block, as 
described in section 4.7.3. 

• L - The number of logical stages in the Euclid block. 
• N - The number of physical stages in the Euclid block. 

 
For example, for an RS(160, 128, T=16) code over the galois field 

01)( from generated )2( 23488 =++++= xxxxxpGF  the correct values are: 
 

L = 36 
N = 12 
T = 16 
WIDTH = 8 
PRIMITIVE = 285 
B = 160 
GENERATOR = 256'he81dbd328ef6e80f2b52a4ee019e0d77 
                 9ee086e3d2a3326b281b68fd18efd82d 

 
There are several constraints on L and N: 

• L must be even 
• L must be ≥ 2 T + 2 (the size of Gadiels array) 
• N must be less than L 
• N must be a factor of L 
• (2T + 1) + (2TL/N + 1) + 4 ≤ B cycles (see constraint 1 in section 4.11.3) 
• (2TL/N + 1) + 6 ≤ B cycles (see constraint 2 in section 4.11.3) 

 
Example1: B = 160, T = 16, L = 36, N = 12  

ð 134 ≤ 160 
ð this is acceptable 

 
Example2: B = 160, T = 16, L = 36, N = 9 

ð 165 > 160 
ð this is unacceptable (breaks constraint 1) 

5.2.2 Clock enable 
To configure the design with a synchronous clock enable, define the following macro 
in the params.v file: 
 

`define ALWAYS_AT_POSEDGE_CLOCK always @(posedge clock) if (clocken == 1) 

 
To configure the design without a synchronous clock enable, define the following 
macro in the params.v file: 
 

`define ALWAYS_AT_POSEDGE_CLOCK always @(posedge clock) 
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De-asserting the clock enable essentially freezes the state of the whole design, rather 
like a gated clock. 
 
Note that including a synchronous clock enable can add considerably (10%-20%) to 
the overall area, since a 2-input multiplexor needs to be added to the front of each 
flip-flop. This overhead might be reduced if the target ASIC library includes flip-flops 
with a built-in clock enable. 

5.2.3 Synthetic libraries 
The Galois field addition and multiplication operator implementations supplied from a 
used defined synthetic library. This has two advantages: 

i. A level of hierarchy is created automatically for each synthetic operator, 
thus reducing the number of gates at any one level. This has a dramatic 
(approximately 80%) reduction in synthesis time. 

ii. Constants are automatically propagated into these operators, allowing 
constant multipliers to be optimised automatically (as described in section 
2.3.3) 

 
A verilog function is mapped to a synthetic operator using the Synopsys 
map_to_operator directive: 
 

function [WIDTH - 1 : 0] GFAdd_fn; 
// synopsys map_to_operator gfadd_op 
// synopsys return_port_name x 
`include "GFAdd_fn_body.v" 
 
function [WIDTH - 1 : 0] GFMult_fn; 
// synopsys map_to_operator gfmult_op 
// synopsys return_port_name x 
`include "GFMult_fn_body.v" 

 
An alternative is to compile the adder and multiplier as standalone modules, and then 
use the Synopsys map_to_module directive. The –boundary_optimization flag to 
the Synopsys compile command should be used, as in this case constant propagation 
does not occur automatically. The results achieved are similar, but with an increased 
compile time. 

5.3 Synthesising the design 

5.3.1 Build script 
To synthesise the design, make sure you have a valid .synopsys_dc.setup file in 
your home directory. Then execute the following: 
 

cd galois 
./dc_shell –f analyze.script 
cd rs 
mkdir WORK 
./RUNSYN 
cd run_<date> 
cat errors.txt (there should be none) 
cat warnings.txt (there will be a few) 

 

For reference, here is the current RUNSYN file: 
 

#!/bin/csh 
 
# create a results directory 
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set dir=run_`date +"%d%h%y_%H%M"` 
 
# run synopsys 
dc_shell -f reedsolomon.script | tee build.log 
 
# move results files to results directory 
mkdir $dir 
mv build.log command.log $dir 
mv *.area *.timing *.routing *.cells *.db *.vg $dir 
 
# perform some post processing of results 
cd $dir 
 
echo Checking for errors: 
grep "Error" build.log | tee errors.log 
 
echo Checking for warnings: 
grep Warning build.log | tee warnings.log 
 
printf "%-12s %10s %10s %10s %10s %12s\n" "module" "comb area" "reg area" "net 
area" "total area" "timing" | tee summary.log 
 
foreach file ( `/bin/ls *.area` ) 
 
   set i=`echo $file | cut -d'.' -f1` 
   set name=`echo $i | cut -d'_' -f1` 
 
   set a1=`cat ${i}.area | grep "Combinational area" | cut -d':' -f2 | cut -
d'.' -f1 | awk '{print $1}'` 
   set a2=`cat ${i}.area | grep "Noncombinational area" | cut -d':' -f2 | cut -
d'.' -f1 | awk '{print $1}'` 
   set a3=`cat ${i}.area | grep "Net Interconnect area" | cut -d':' -f2 | cut -
d'.' -f1 | awk '{print $1}'` 
   set a4=`cat ${i}.area | grep "Total cell area" | cut -d':' -f2 | cut -d'.' -
f1 | awk '{print $1}'` 
   set cp=`cat ${i}.timing | grep "data arrival time" | head -1 | awk '{print 
$4}'` 
 
   printf "%-12s %10s %10s %10s %10s %12s\n" $name $a1 $a2 $a3 $a4 $cp | tee -a 
summary.log 
 
end 

 
For reference, here is the current reedsolomon.script file: 
 

/* 
 * EQN-10 - warning: Defining new variable 
 * VAL-3  - warning: Parameter/generic value exceeds the threshold length 20 
 */  
suppress_errors = { EQN-10 VAL-3 } 
high_fanout_net_threshold = 0 
search_path = search_path + ../galois 
define_design_lib GALOIS -path ../galois 
synthetic_library = synthetic_library + "galois.sldb" 
link_library = link_library  + "galois.sldb" 
define_design_lib WORK -path ./WORK 
hlo_resource_allocation = none 
hlo_resource_implementation = area_only 
 
foreach (DESIGN, { GFAdd, GFMult, GFInverse } ) { 
   analyze -format verilog DESIGN + ".v"  
   elaborate DESIGN 
   set_max_area 0 
   set_fix_multiple_port_nets -all 
   check_design  
   compile 
} 
foreach (DESIGN, { EuclidCell } ) { 
   analyze -format verilog DESIGN + ".v"  
   elaborate DESIGN 
   set_max_area 0 
   set_fix_multiple_port_nets -all 
   uniquify 
   check_design  
   compile 
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   set_dont_touch current_design  
} 
foreach (DESIGN, {  delay polyeval expander erasurelist scaler fourney monitor      
syndrome euclid symboldelay decoder encoder }) { 
    analyze -format verilog DESIGN + ".v"  
} 
foreach (DESIGN, { encoder decoder } ) { 
   elaborate DESIGN 
   uniquify 
   create_clock -period 1000 clock  
   set_max_area 0 
   set_fix_multiple_port_nets -all 
   check_design  
   compile 
   write -format db -hierarchy -output DESIGN + ".db"  
   write -format verilog -hierarchy -output DESIGN + ".vg"  
   report_timing -nets > DESIGN + ".timing"  
   report_area > DESIGN + ".area"  
   report_routability > DESIGN + ".routing"  
   report_cell > DESIGN + ".cells"  
} 
d1 = "syndrome" 
d2 = "erasurelist" 
d3 = "expander" 
d4 = "euclid" 
d5 = "delay" 
d6 = "euclid" 
d7 = "scaler" 
d8 = "polyeval_0" 
d9 = "polyeval_1" 
d10 = "polyeval_2" 
d11 = "fourney" 
d12 = "symboldelay" 
d13 = "monitor" 
foreach (DESIGN, { d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 }) { 
   echo DESIGN 
   current_design DESIGN 
   report_timing -nets > DESIGN + ".timing"  
   report_area > DESIGN + ".area"  
   report_routability > DESIGN + ".routing"  
   report_cell > DESIGN + ".cells"  
} 
quit 

5.3.2 Results 
The following results were obtained for the RS(160, 128, T=16) code, targeting the 
Agere MACO libraries: 
 

submodule        comb area   reg area   net area total area       timing 
delay               175        160         11        335         0.34 
erasurelist        3619       6624        352      10243         0.39 
euclid            31158      13128       1794      44286         0.68 
expander          30819       8625       1390      39444         1.08 
fourney            7235       3360        422      10595         0.39 
monitor           11253       4496        487      15749         0.39 
polyeval          11360       4993        500      16353         0.34 
polyeval          11360       4993        500      16353         0.34 
polyeval          11360       4993        500      16353         0.34 
scaler            17154      13040       1006      30194         0.34 
symboldelay       16912      38656       1329      55568         0.34 
syndrome          10948       4552        481      15500         1.38 
 
module        comb area   reg area   net area total area       timing 
encoder           13299       4560        538      17859         6.78 
decoder          163531     107796       8615     271327        13.78 

 
The area figures are in grids (an Agere metric). For the MACO process, the gate 
density is quite low (2.55 gates/grid) and so the apparent gate counts are quite high. 
The encoder comes out at 7.0K gates and the decoder comes out at 106K gates. 
 



 
Design of a Synthesisable Reed-Solomon ECC Core 

 53 5/24/2001 10:02 AM 
  

Moving to their HL200CDE standard cell library, with a gate density of 3.23 
gates/grid improves matters. The encoder comes out at 5.5K gates and the decoder 
comes out at 84K gates. 
 
If the synchronous clock enable is removed, and the standard cell library used, the 
area is significantly less. The encoder comes out at 5.0K gates and the decoder comes 
out at 73K gates. 
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