[} cickano

Design of a Synthesisable Reed-Solomon
ECC Core

David Banks

Publishing Systems and Solutions Laboratory
HP Laboratories Bristol

HPL-2001-124

E-mail: dmb@hplb.hpl.hp.com

Reed-Solomon, In this report we describe the design of a Reed-Solomon error
error correction, correction core that supports errors and erasures decoding. In a
verilog second report HPL-2001-125 we describe the verification of this core.

synthesis,
synthesisable,
hardware, ECC,
Galois field

The core consists of separate encoder and decoder blocks that can be
operated independently, each with symbol wide data paths. These
blocks have sufficient throughput to handle back-to-back codewords,
and the overall latency is typically less than two codewords.

The design is expressed in the Verilog hardware description language
(Verilog HDL), and is fully synthesisable. The design supports a wide
range of different Reed-Solomon codes, with the choice of a particular
code being made at synthesis time. This approach has a number of
advantages that aid shorter product design cycles, by allowing the
changes in the choice of code and target technology to be made late in
the design cycle. Because of its flexibility, the design could be reused
across a wide range of products with differing coding requirements.

A sample design configured for a RS(160, 128,T=16) code in GF(2"8)
was targeted to the Agere HL200CDE 0.20um standard cell library.
This resulted in a gate count of 72K gates, an encoder latency of 2
cycles and a decoder latency of 305 cycles. The design could be

clocked at 70MHz.

) Copyright Hewlett-Packard Company 2001 Approved for External Publication

Design of a Synthesisable Reed- Solomon ECC Core

L INTRODUCTION. ..ottt sttt ettt sre e neessesaesresne e 5
2 GALOIS FIELD OPERATIONSottt nneas 6
A N 1= o [0 T a1 = LA o) o 1S 6
2.2 REPIESENTALIONS ..o cteeciie ettt et e et s e et e et e e sae e e beesseeenbeesaeeenreesneas 6
2.2.1 POWES FEPIESENLALION. ... c.ueeveeueeieeesie sttt sttt e e ss et see bt e seesre e snis 6
AV NV o o (SR 1= o == g1 (o] o IS 6
2.2.3 BiNary repreSentalion.........ccccueiieeiieiieesiie e see e sres s ae e sre b e saeennes 7
2.3 ArithmeEtiC OPEr ALIONSocueieeiieeeeeee e 7
P2 3 Y o (o [o o ST 7
2.3.2 FUl MUIIPHICALION........ccieieeie ettt 8
2.3.3 Constant MUItIPHCALTION..........cccueiiieiie e 10
PG | g1V = o o S 10
2.4 Representation CONVEN SIONcciiieeieerieseesteesseseesseesseseessessseseesseessesseessesseas 11
2.4.1 Power t0 tUPPIE CONVEISION........cocivieiuieeiiesieeeteesiee e e see e e s e ae e s e ereesnee e 11
2.4.2 TUPPIE tO POWEN CONVEISION.......eieirerrerrerieeieeeeeeseeseestessesse e seeseesneseessesneneeas 12
S ENCODER ...ttt bbbttt bt 13
G 3 72 [0 11 o PSRRI 13
O 1 1= = To USSP 13
TG =] FoTox Tqe [=T | =T o o USSR 15
G N @] 1< g o o OSSPSR 15
A DECODER ...ttt sttt ne e n e ne e e 17
.1 ATGONTERM .. 17
1= = 0SSR 18
A.3BIOCK dI@Qramcoeeieicie e e ere e 21
4.4 SYNAromMeEDBIOCKcc.eiieeeeeee e 22
2 N o o 1 o S 22
4.4.2 BIOCK QIAQraM....c.eeeciieciie ettt sttt e e e nre e enne e 22
A.4.3 OPEIBLION......cueieeeuieieeieee et ee sttt e s e e st e b e sresbesbe et e e e s e s e snesbesresnenneas 22
A5 Erasurelist DIOCKcccoieiiiiiie e 23
30 AN [To 110 0 0 S 23
TSI = [oTex 1o [T o =t o FO OSSPSR 24
A.5.3 OPEIBLION......cveitieuieiieieeeie ettt sttt ste bt e bt sbe et se e e et e s e b naesnenneas 24

2 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

4.6 EXPANAEr DIOCKooviceeeeeeee ettt 25
T AN Lo o] 1o 1 o OSSPSR 25
4.6.2 BIOCK QIAGIaM....cueiiieiieieiesie ettt 26
TSR N @ o7 = o] 1S 26

N 1T 1o I o] Lo GRS 27
A.7.1 ALGOTTTNIM .o 27
ViR A DTS Tolor < | o (=S Ko o S 29
A.7.3 Cll SNAIMNG ..eeivieectiecieece e er e e e s ae e sreeeareea 32
A.7.4 OPEIBLION......cueieeeieeieeieee ettt sttt e et re st e st e s b e sbe e e e e e s e s e snesbesnesnenneas 34

B D= =\ o] oo 35

VIS I o= = g] oo SR 35
T B AN Lo o 1 o1 1 o OSSPSR 35
4.9.2 BIOCK QIBOIAIM ...ttt sne e 37
ZI RS A @ o 1= -1 o] o 1S 37

4.10 Polynomial evaluation BIOCKccceiiiiiiiiiie e 38
4.710.1 AlQOITERM ..t sne e 38
VI (02 =] T Tox e F="o | = o 39
A.10.3 OPEIALION.....ccuviiitieiieeitie et estee e st ete st e e e s esbe e beeabeesseesreesseeaseesreesnreens 39

411 FOrNEY DIOCK ...ttt 40
2 I 00 A ' o 11 1 0 40
I 2 = Vo Tox o = o = S 44
IR N @0 < - 1 o] 1SRRI 44

4.12 Symbol delay DIOCKcooieeeiee e 45

413 Error correction DIOCKoocive i e 46

v Y Ko 011 (o) gl o] (oo QUSSR 46
4.14.0 AIQOMTERM .. 46
2 I = o Tox g0 =o' 47
e A @0 - 1[0 ISR 47

B SYNTHESIS. ...t sttt e sreeneeneeneeneens 48

5.1 S0UMCETIIEIAYOULc.eiviiiieieieee e e 48

5.2Configuring the deSIgNocee e 48
O.2. 1 Pal@IMELENS..... ittt ettt e et e e se e e e e eae e e s e e sneeenneenneeenne 48
5.2.2 ClOCK NEDIE.........eo e 49
I RS 011 = (Tl 1T = - S 50

5.3 SyNthesiSING the deSIgN......c..oiee e 50
TG 00 I = 11] o R o T o TS 50
5.3 2 RESUILS. ...ttt nae s 52

6 REFERENCES........o ottt 54

3 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

FiQUrE 1 - GF(2%) MUILIPIEN ...eeeeeeeeeeeeeeeeeeeee e ees s 9
Figure 2 - Encoder timing diagram...........cccveeeiieieiie et 14
Figure 3 - Encoder DlOCK diagram...........ccooeiieieieiiieesesesese e 15
Figure 4 - Decoder timing diagraiM..........coeeeriririieniesesiesie e 19
Figure 5 - Decoder block diagram..........cccccveeeieeie i e 21
Figure 6 - Syndrome block diagram...........ccceeiieiieiie e 22
Figure 7 - Erasurelist block diagram..........ccocceeirieniieneseereseeeeee e 24
Figure 8 - Expander block diagram...........cccveeiieie e 26
Figure 9 - Data structure for Euclidean COMpULation.............cccveveeeieeveeciieeseesineesnn, 27
Figure 10 - EUCd CEll AESIGNcoiiieiiieeeeeeee e 29
Figure 11 - Euclid cell operation- N0 SWap OCCUIS........cccueeeereerieseesieeseeseesseeeesneenne 30
Figure 12 - Euclid cell operation — SWap OCCUIS..........coveueeeeieerie e see e 31
Figure 13 - Example of the modified Euclidean data Structure.............cccooceverenennene 33
Figure 14 - Implementation of euclidean COMPULELION.............ccevreeieieererenereseniens 34
Figure 15 - Polynomial evaluation Cellcccceeieiieieccecesece e 36
Figure 16 - Polynomial scaler block diagram...........cccceeveeiiiiiiciie e, 37
Figure 17 - Reformatting of polynomialSin SCaler..........ccoovvevineriiieieiesese e 38
Figure 18 - Polynomial evaluation block diagram...........ccceeevveveiieevecce e 39
Figure 19 - Forney block diagramcceeeieeiieciiie s 44
Figure 20 - Monitor BIOCK diagram............ccoeeeeieiierereresie e 47
Table 1 - State table for the encoder DIOCKccoiiiiiiii 16
Table 2 - State table for syndrome blocKcceceviveiiiceceeeeecee e, 23
Table 3 - State table for erasurelist DIOCK ..o, 24
Table 4 - State table for expander DIOCKccoooiiiiiii 27
Table 5 - State table for euclid block (trivial Case).......cccccvvevvicesieie e, 34
Table 6 - State table for euclid block (nonttrivia Case).......cccccveveeveevecce e, 35
Table 7 - State table for polynomial evaluation blocKcceceveeienninneienee, 39

4 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

1 Introduction

This document describes the designof the Reed-Solomon ECC block designed by HP
Labs Brigtal. For further details on the verification of the, please refer to [1]

A Reed Solomon code of the form RS(B, B - 2T, T) hasthe following properties:

- Codewords are blocks of B symbols, where B — 2T of these symbols are
information symboals, and the remaining 2T are check symbols.
Symbols are sequences of W hits.
It can correct up to T symbol errors; an error is a corruption whose location and
magnitude are unknowns.
It can correct up to 2T symbol erasures; an erasure is a corruption whose location
is known, but whose magnitude is unknown.
It can correct any combination of E symbol errors and J symbol erasures, aslong
as2E+JE 2T.
If B = 2V-1, the code is said to be a full-length code.
If B <2"-1, the code is said to be a shortened code.

Reed- Solomon codes operate in Galois fidds, for an introduction to Galoisfied
arithmetic, seg2].

Codewords are treated as polynomids by using the codeword symbol values as the
coefficients of the polynomid. The standard convention in Reed- Solomon codes is
that the vaue of the first symbol q.e the firgt information symbol) in the codeword is
used as the coefficient for thexE ! term, and the value of the last symbol in the
codeword (i.e. the last check symbol) is used at the coefficient for the>? term.

A valid codeword has the property that, when viewed as apolynomid, it is exactly
divishble by the code generator polynomia. The code generator polynomid takesthe
form:

g(x) = (x+a ")(x+a

- 2
=90t gi X+ G, X" +... 4 Qyr 4 X

L+1 L+2 L+2T-l)

)(x+a "%)...(x+a

2T-1 + X2T

The choice of L issomewhat arbitrary, inthat al vaues of L result in vaid Reed-
Solomon codes. Some smplifications of the decoder are possibleif L=1. Some
amplifications of the encoder are possble for values of L that give rise to paindromic
generator polynomias. We have used the case where L=1.

The 2T check symbols are calculated from: b(x) = x?" a(x) mod g(x), where the
coefficientsof a(x) are the information symbols, and the coefficients of b(x) are the
check symbols.

The codeword c(x) is cdculated from: c(x) = x2T a(x) + b(x). Thisissmply a
concatenation of a(x) and b(x). The codeword c(X) is now exactly divisble by g(x).

The minimum distance between different codewordsis 2T + 1. Any two codewords

will differ by at least 2T + 1 symbols, we can add T errors, and still be closer to the
original codeword that to any other.

5 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

2 Galois field operations

2.1 Field generation

The Gdoisfidd GF(2") isafinite fild consisting of 2"V elements, generated from a
primitive field generator polynomid.

For example, the Galois fidd GF(2%) can be generated from the primitive polynomia
p(x) = x* + x + 1.

GF(2*) consist of the following dements
{0,1,a,a%a%a*a"a’a’,a%a%al%a
where a istheroot of p(x), i.e.p(a) = 0.

11

2.2 Representations

2.2.1 Power representation
Power representation of field eementsisintheform a' where0£i £ 2V — 2.

2.2.2 Tupple representation
Tupple representation of field dements uses the fact that p(a) = 0.

For example, in GF(2*) generated from p(x) = x* + x + 1:
p(x) =x*+x+1
p@) =a*+a+1=0
\a* =a+1

Smilarly,
a> =aa’
—a(a+1)
—a’+a

In generd, each field dement may be represented as alinear combination of a*/2...
a’altanda®

For GF(2*) generated from p(x) = x* + x + 1, the complete field is:

power tupple
representation | representation

O N O O B W N
N

SAEIEAERENEIEA I EE

6 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

a
a

+a
+a+1
a’+a’+a
a’+a’+a+1
as+a’+1
as+1

10

11
12
13

W W W N W

14

SRAEREAERERE

2.2.3 Binary representation
Binary representation smply uses the coefficient of a' astheit” bit in aW-bit number.

For GF(2*) generated from p(x) = x* + x + 1, thislooks like:

power tupple binary
representation representation representation
0 0 0000
1 1 0001
a a 0010
a2 a’ 0100
a> a® 1000
a’ a +1 0011
a° a’+a 0110
a® a’+a’ 1100
a’ a®+a+1 1011
a8 aZ+1 0101
a® a®+a 1010
alf a’+a+1 0111
all a®+a’+a 1110
al? a’+a’+a+1 1111
al a®+a’+1 1101
al 2+ 1 1001

It is quite straightforward to show that if alinear feedback shift register is congtructed
from p(x) and seeded with 1, then the sequence generated will correspond to the
binary representation sequence shown above.

2.3 Arithmetic operations
When implementing Galois field arithmetic operations, we assume the dataisin
binary representation.
2.3.1 Addition
Addition in GF(2):
0+0=0
0+1=1
1+0=1
1+1=0

Additionin GF(2%):

7 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

b =b+ ba + ba®+ bsa®andg= co + cia + c,a® + cza’
whereb, g1 GF(2*) andb;, ¢;1 GF(2)
b+ g= (bo+ Co) + (b1 + cr)a + (b + c2)a? + (bs + ca)a’

Thus, addition of two field dements is achieved by XORing the binary representation
of two field eements together.

The following parameterised verilog function generates the hardware for Galoisfied
addition:

function [WDTH - 1 : 0] GFAdd _fn;
input [WDTH - 1 : 0] a;
input [WDTH - 1 : 0] b;

begin
GFAdd_fn = a * b;

end

endfuncti on

2.3.2 Full multiplication
Multiplication in GH(2):

R PP, OO
R OPRFrO
I n
= O OO

Multiplication in GF(2*):
b=ho+ bia+ ba?+ bsalandg=cy+ c;a + c,a? + cza’
whereb, g1 GF(2*) andb;, ;T GF(2) andp(x) = x* + x + 1

b.g =po+pa+pa’+pa’+pa’+psa®+pa’
= po+ pia + ppa’+ psa’ + pa(a + 1) + ps(a + a’)+ ps@’+ a)

= (po+ pa)+ (pr+ pa+ ps)a + (P2 + ps+ pe)a’ + (ps + pe)a’
= do + dia + dya® + dza’®

where
Po =bo Co
p1=bocy+ b1 co
P2 =bg C2+ by €1+ b2 Co
p3=bpC3+ by C2+ bacy+ b3 Co
Pa=byc3+ baCr+ b3y
ps=byCc3+ b3 Cy
Ps = b3 C3

The hardware to implement thisisillustrated in Figure 1.

8 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

bO'CU pO
b b,
0 b..c 2 b,.c
Co oo COD_ 2o bo.Cy

b,.c P
o b2 1-~0

o o

.

261 by-C,

D_ Po

D 2D
D—bz-cz by.co

2 be byC, Py]:)_d1
c, s b,.c, 3
Ps
AT AL
Doe 1)
3770
:D_ b,.c

o o

~N

VUOUOUOY

o

o o

w’ o
o
<
o
w

)

o
WS

b,.c b..c
KoRT D D
b..c. p d
b b 272 4 3
o byo, ° b,.c, b,.c, Pe
2 2
b,.c
> : D
b..c 8 b,.c. 5
cs 1C3 Cs:l:)_ 3:C3 b,.c,
bs.c5 Pe

Figure1 - GF(2*) Multipier

The following parameterised verilog function generates the hardware for Gaoisfield
multiplication:

function [WDTH - 1 : 0] GFMult_fn;
input [WDTH - 1 : 0] a;
input [WDTH - 1 : 0] b;
reg [WDTH * WDTH - 1 : 0]
andarray;
reg [WDTH * 2 - 2 : 0]
product ;
reg [WDTH - 1 : 0]
tnp;
i nteger
I,
I
prbs;
begin
andarray = O;
product = O;
tnp = 0;
for (i =0; i <WDTH;, i = 1
for (j =0, j <WDTH, j =] +
andarray[i * WDTH + j] = a]
for (i =0; i <WDTH* 2 - 1; i
begi n
product[i] = O;
for (j = ((i <WDTH) ?2 0 : i - WDTH + 1);
j <= ((i < WDTH) ? i : WDTH - 1);
j =i +1
product[i] = product[i] ” andarray[WDTH * j + i - j];
end
for (i =0; i <WDTH, i =i + 1)
begi n
tnp[i]
prbs =
for (j
begin
if (prbs & (1 << i))

)

1)

i1 &b[j];
=i + 1)

0;

Il

0; j <WDTH* 2 - 1; j = + 1)

tnp[i] = tnp[i] * product[j];
prbs = prbs << 1;
if (prbs & (1 << WDTH))
prbs = prbs * PRI M Tl VE;
end
end
GFMult _fn = tnp;

end
endf unction

The three loopsin the verilog correspond directly to the three stagesin the Figure 1.

9 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

2.3.3 Constant multiplication
The verilog function for full multiplication can dso be used when one of the operands
isacongant. If this congtant is dlowed to propagate through the logic, the logic can
be considerably optimised. The specific gates that are removed will depend on the
vaue of the congtant. Synopsys can perform this optimisation automatically.

Asan example, assumeb = a® = a®+a = 1010:
b=a+a®andg=cy+ cia + ca’ + cza®
whereb, g1 GF(2*) andb;, ¢;1 GF(2) and p(x) = x* + x + 1

b.g =po+pa+pa’+pa’+pa*+psa®+pa’
= po+ pia + poa’ + pza’+ pa(a + 1) + ps(a + a’)+ ps(@’ + a’)
= (Po+ pa) + (Pr+ Pa+ pPs)a + (P2 + ps + pe)a’ + (ps + pe)a’

where
Po = bo Co
p1=boci+ b1 Co
P2=DbpCo+ by c1+ b2Co
pP3=DbpCz+ b1 Co+ byci+ b3
ps=bics+ byco+ bscy
ps=b2c3+ bz c
Pe = bs C3

NO\N,SUbSitUtiﬂgbo:O, b]_:l, b2:0b3:1
Po=0
P1=0Co
p2=0C
ps=Cz2+ Co
ps=Cz+ C1
Ps =C2
Pe = C3

b.g =(ca+cy)+(Co+Ca+cr+cra+ (Cr+ Cr+cs)a+ (co+co+ ca)a’
=do + dia + dha’+ dsa

From this example it can be seen that the array of AND gates can be optimised away,
and that the result could be formed by XORing together bit combinations from the
variableinput. In this case, eght 2-input XOR gates would be required.

In generd, the Slicon area of aconstant multiplier is about 25% of that of afull
multiplier.

2.3.4 Inversion

Inverson of afield ement is best done as alookup table for small fidds. The
following verilog function can be used to congtruct such alookup table:

function [WDTH - 1 : 0] GFlnverse_fn;
input [WDTH - 1 : 0]

10 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

a,
reg [WDTH - 1 : 0]
res,
prbstable [0 : (1 << WDTH) - 1];
i nt eger
I,
pr bs;
begin
prbs = 1;
for (i =0; i < (1 <<WDTH); i =i + 1) begin
prbstable[i] = prbs;
prbs = prbs << 1;
if (prbs & (1 << WDTH))
prbs = prbs ~ PRI M Tl VE;
end
res = 0,
for (i =0; i < (1 <<WDTH) - 1; i =i + 1)
if (a == prbstable[i])
res = prbstable[(1 << WDTH) - 1 - i];
GFlnverse_fn = res;
end
endfunction

The input to the function, &, isin binary representation.

Thefirgt for loop is used to fill the prhbstable memory with the binary representation
of successive field elements. The binary representation of a' isstored in prbstable
entry i.

The second for |loop iterates through the table until an entry equal to a isfound. The
index of that entry isi, and so the element a in power representationisa’.

Theinverseof a' isa?W-1-',

Thedement a entry 2V- 1 - i istheinverseof a, in binary representation, and so this
vaueis returned by the function.

It turns out that Synopsys does a reasonable job of expanding these loops and
optimising the resultant logic, at leest for the fidld GF(2®).

2.4 Representation conversion

2.4.1 Power to tupple conversion

The following verilog implements power to tupple conversion. In our implementation
thisis used to generate congtants, and so no logic is actudly generated:

function [WDTH - 1 : 0] GFPtoT_fn;
i nput [31:0]
power ;
i nteger

I,
tuppl e;
begin
tupple = 1;
if (power % ((1 << WDTH) - 1) != 0)
for (i =0; i < power % ((1 << WDTH) - 1) ; i =i + 1)
begin
tupple = tupple << 1;
if (tupple & (1 << WDTH))
tupple = tupple » PRI M TI VE;
end
GFPtoT_fn = tupple;
end
endfunction

11 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

2.4.2 Tupple to power conversion
Tupple to power conversion is not needed.

12 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

3 Encoder

3.1 Algorithm

The encoder needsto calculate the 2T check symbols from the B — 2T information
symbals, such that the resultant codeword is exactly divisble by the generator
polynomid.

The 2T check symbols are calculated from: b(x) = xT a(x) mod g(X), where the
coefficientsof a(x) are the information symbols, and the coefficients of b(x) are the
check symboals.

The codeword c(x) is calculated from: ¢(x) = x*T a(x) + b(x). Thisissmply a
concatenation of a(x) and b(x). The codeword c(x) is now exactly divisble by g(x).

3.2 Interface

modul e encoder (

/1 1 NPUTS
cl ock,
cl ocken, /1 an active high clock enable
reset,
| oad, /1 Must be asserted to mark the first synbol of the nessage.
di n, /1 The synbols of the nmessage to be encoded.

/1 OUTPUTS
active, /'l Asserted (high) during the output of the codeword.
sob, /'l Asserted (high) to mark the first synbol of the codeword.
eob, /'l Asserted (high) to mark the |last synmbol of the codeword.
dout /'l The synbols of the codeword.

)
The system clock has the rising edge as the active edge.

The reset isan active high synchronous reset, and must be asserted for aminimum of
one clock period.

To load a B-2T symbol message into the encoder, the load signal must be asserted
with the first symbol of the message, and then de-asserted as the remaining B-2T-1
symbols of the message are clocked in over successive clock cycles. There must be a
minimum of 2T idle cycles between the B-2T symbol messagesto alow time for
computation of the check symbols.

Sl cyclesmay be inserted a any point by taking clocken low. This freezes the Sate
of the whole encoder, and is equivaent to gating the clock.

Thereis minima buffering within the encoder, S0 the first symbal of the B symboal
codeword will be output on dout afew clock cycles after load is asserted. The
remaining symbols of the codeword are output on dout over successive clock cycles.

The actua latency of the encoder (load active to sob active) is 2 clock cycles (i.e. the

equivaent of two pipdine register sages), assuming clocken isheld high. Any gdl
cycles add directly to the latency.

13 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

Active is asserted (high) for the B cycles during which the codeword is being outpt.
Sob is asserted (high) with the first symbol of the codeword. Eob is asserted (high)
with the last symbol of the codeword.

The throughput of the encoder is such that it can output back-to-back codewords
without any idle cyclesin between.

The timing diagram for a R§(160,128,T=16) code is shown below in Figure 2.
clock MLFUWW//W//MW

clocken L] Ll i /I //
stall stalk
load 1 - e I J—L1
din //
sob [1 /II /II |_|
active /l //
eob /I /I 1

dout @I 0 X X 2 Y3 XAX_ 5 X6)//(EEXEXTIE)/ (BB T X X 2D

128 information 32 check

B=160 symbols symbols

T=16

Figure 2 - Encoder timing diagram

This example shows one codeword, possibly followed immediately by a second one.
The diagram dso shows some gal cycles. During agtal cycle the values gpplied to
the inputs are immeateriad, and the outputs hold their previous vaues.

14 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core
3.3 Block diagram

clock—,

reset .,

load __|
state EN_I DLE
> EN_CODE

EN_DATA

state
machine

EN_DATA—D I sob
EN_CODE active
EN_DATA:D I
EN_CODE—D—I_ eob

din dinl

9, 9, Oat-3

state state state state state state

Figure 3 - Encoder block diagram

3.4 Operation

The dassc linear-feedback shift register (LFSR) structure can be used to perform
polynomid divison. For a detailed description of how this works, see [3] page 172.
The polynomid formed from the B — 2T information symbols is divided by the
generator polynomia, and the remainder of thisdivison is used as the 2T check

symbols.

The lower half of Figure 3 implementsa 2T tgp LFSR. The multiplier coefficients are
the coefficients of the generator polynomid in its expanded form (i.e. gi isthe

coefficient of the x' term).

The state table for the encoder block is shown below:

state count comment

EN_I DLE 0 Say in this gate until load
asserted.

EN_DATA 0 Stay inthisstate for B — 2T cycles

EN_DATA 1 while information symbols are

consumed and check symbols

EN_DATA B-2T-1 calculated.

EN_CODE B-2T

15 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

EN_CODE B-2T+1 Stay in the state for 2T cycles
while check symbols are clocked
EN_CODE B-1 out.

If generating back-to-back
codewords, move straight back to

EN DATA, dseEN_IDLE.
EN DATA or 0 aic
EN_I DLE

Table 1 - Statetablefor the encoder block
Initidly the state machineisinthe EN_IDLE date.

As soon asload is asserted, the state machine movesto the EN_DATA sate and the
counter startsincrementing. For the next B — 2T cycles the multiplexors connect the
adder outputs to the register inputs, thus forming an LFSR. At theend of B — 2T
cycles, the LFSR registers hold the remainder.

When the count reaches B — 2T — 1 the state machine movesto the EN_DATA date.
The multiplexors now smply connect the registersinto a conventiond shift regigter,
alowing the check symbols to be shifted out, most significant first. For the next 2T
cycles the check symbols are shifted out.

When the counter reaches B — 1, the state machine will move back to the EN_IDLE
date (if load is zero) or move back to the EN_DATA date (if there is another data
block to encode).

Thereis an optimisation that could be done to remove the 2T multiplexors. A gate
could be inserted in the feedback path, allowing the feedback termto be forced to
zero. This would have the same effect as switching over the multiplexors. If thiswere
done, the reset behaviour would change slightly. On reset, the state machine would
have to stay in the idle state for 2T cycles, allowing zeros to propagate through the
registers.

16 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

4 Decoder

4.1 Algorithm

Almogt dl practical decoders reported in the literature follow the syndrome based
decoding approach. Thisinvolves the following steps:

1. Cdculae the syndromes

2. Cdculatethe error locator polynomid s (x) from the syndromes

3. Find theroots of the error locator polynomid s (X) to determine the error locations
4. Cdculatetheerror values

We have taken this approach, and included additiona stepsto support erasures
decoding.

Let the origind codeword be represented by the polynomid:
C(X) =Cy X+ Gy ,XT 2+ 40, X7 +C X+,

Let the error pattern be represented by the polynomial:
o(X) = € X7 T+ X+ H X H Xt e

L et the received (corrupted) codeword be represented by the polynomid:
d(X) =dg. x® ' +dg X% 2+ +dx* +dx+d,
=c(x) +e(x)

Cdculate the syndrome polynomid:
S(X) = Syr. X7 T+ S X+ SXT G XH G
where§ =d@"")

Form the erasure locator polynomid:
ol
L) =0 (x+a™)
i=0
where v, are the symbol postions of the J erasures.

Cdculate the modified syndrome polynomid:
T(X) = S(x) 4 (X) mod X7

Use the extended Euclidean Algorithm to s (x) and w (x) that solve the key equation:
S (X) XT (x) © w(x) mod x*

S (x) is the error locator polynomia
w (X) is the errata evaluator polynomia

Use the Chien search to determine theroots of s (x) and L (x) for xT {a &2 ...a @}

17 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

If s (x) =0for some x=a " an error has occurred in symbol i, and the error magnitude
isgiven by:
Q :&Whae)(:a'i
s '(¥) H(x)
If L (x)=0for somex=a"
magnitudeis given by:

an erasure has occurred in symbol i, and the erasure

W (X ;
E, :#Wherex=a'
s (x> '(X)
4.2 Interface
modul e decoder (

/1 1 NPUTS
cl ock,
cl ocken, /'l an active high clock enable
reset,
| oad, /'l Must be asserted to mark the first symbol of the codeword.
erasurein, // A one indicates the synmbol was an erasure.
di n, /1 The synbols of the codeword to be decoded.
maxer asures,// The maxi mum nunber of erasure we will tolerate

before declaring uncorrectable.

/1 OUTPUTS
active, /'l Asserted (high) during the output of the corrected codeword.
sob, /] Asserted (high) to mark the first synbol of the corrected codeword.
eob, /1l Asserted (high) to mark the |ast synbol of the corrected codeword.
dout , /1 The synmbol s of the corrected codeword.
st at us, /1 0 correctable, no errors, no erasures.

/11 correctable, no errors, sone erasures.

/1 2 - correctable, some errors, no erasures.

/1 3 - correctable, some errors, sone erasures.

/1 4 - uncorrectable, no erasures.

/1 5 - uncorrectable, sonme erasures.

/1 6 - uncorrectable, special case 1.

/117 uncorrectabl e, special case 2.
nerrors, /1 The nunmber of errors (undefined if status >= 4)
nerasures /1 The nunber of erasures.

)
The system clock has the rising edge as the active edge.

The reset isan active high synchronous reset, and must be asserted for aminimum of
one clock period.

To load aB symbol codeword into the decoder, the load signal must be asserted with
the first symboal of the codeword, and then de-assarted as the remaining B-1 symbols
of the codeword are clocked in over successive clock cycles.

Sl cycles may beinserted at any point by taking clocken low. This freezes the Sate
of the whole decoder, and is equivaent to gating the clock.

The latency within the decoder is approximately two codewords, and some time later

the first symbol of the corrected codeword will be output on dout. The remaining
symbols of the corrected codeword are output on dout over successive clock cycles.

18 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

Active is asserted (high) for the B cycles during which the corrected codeword is
being output. Sob is asserted (high) with the first symbol of the corrected codeword.
Eob is assarted (high) with the last symbol of the corrected codeword.

The throughput of the decoder is such that it can output back-to-back corrected
codewords without any idle cyclesin between.

The timing diagram for a R§(160,128,T=16) code is shown below in Figure 4.

clock f1I 1, oo, o, rruuyuru i, o
clocken Il/ // // LJ //

stall

—I_I_ B
load —'_‘—// // y— 1 e //
--////mm-////-@

306 cycles (includes ong stall cycle)

B
3
g

I -

¢ 305 cycles > V|
sob —'—;_' // // I‘;‘I_
active __ | 1/ // L
eob // //_|_ T
dout --////

status —//—//-C:)—
nerrors I/ I/
i i
nerasures (/I /Y
B=160 I 1

T=16 ' sample status on eob

Figure4 - Decoder timing diagram

For aRS(160, 128, T=16) code the actud latency of the encoder (load active to sob
active) is 305 clock cycles (i.e. the equivaent of 305 pipeline register stages),
assuming clocken is held high. Any stdl cycles add directly to the latency

The status signals indicate whether or not the decoder was able to correct the
codeword.

In the case where the codeword was correctable (atus O, 1, 2, 3) nerrors and
nerasures indicate the numbers of errors and erasures present.

In the case where the codeword was uncorrectable (status 4, 5, 6, 7) nerrorsis
undefined and nerasures indicates the number of erasures present. The codeword
(just) output in this case is not guaranteed even to be avalid codeword, and should be
treated as undefined.

The values of status, nerrors and nerasures should be sampled on the clock edge that
occurs when eob is asserted.

19 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

The maxerasures input dlows the maximum number of erasuresthat will be tolerated
to be reduced (below the theoreticd maximum of 2T). Therationd for doing thisis
that it reduces the probability of a corrupted codeword with alarge number of
erasures miscorrecting.

The decoder uses the following basic status codes:

Correctable, no errors, no erasures.
Correctable, no errors, some erasures.
Correctable, some errors, no erasures.
Correctable, some errors, some erasures.
Uncorrectable, no erasures.
Uncorrectable, some erasures.

abr~hwWNEFLO

Dueto the interna architecture of the decoder, the status code is generated after the
decoder has attempted to correct the corrupted codeword, and is only available when
the fina symbol of the corrected codeword is being output. This minimises latency.
Thus, regardless of whether the error pattern is correctable, or not, the decoder will
aways atempt to correct it.

Asan additional check, the decoder re-calculates the syndromes over each sequence
of symbols output by the decoder. This check is performed by the find pipeline sage
within the decoder, called the monitor block. Two additional status codes are
introduced by this block, both of which should be treated as uncorrectable:

6 Uncorrectable, special case 1. This represents the case where the status code
going in to the monitor block was 0 to 3 (i.e. correctable), yet for some reason the
syndrome of the sequence of symbols output by the decoder was non-zero, indicating
an invdid codeword. This could indicate adesign error in the decoder. It could dso
indicate that hardware is not operating reliably, say due to incorrect power supply
voltages, or excessve system noise.

7 Uncorrectable, special case 2. This represents the case where the status code
going in to the monitor block was 4 or 5 (i.e. uncorrectable), yet for some reason the
syndrome of the sequence of symbols output by the decoder was zero, indicating a
valid codeword. This event does occur in practise, particularly if the weight of the
error pattern is 2T + 1 (i.e. just above what is correctable). Usually the codeword,
whilgt valid, isthe wrong one. The only reason we expose this behaviour externdly is
because it may help us to design more effective decoders in the future.

20 5/24/2001 10:02 AM

of a Synthesisable Reed- Solomon ECC Core

esign

D

4.3 Block diagram

2 ru ¥ [t} S
u reset reset reset ﬂ
reset active activel active [— activein active activein active " active Q
sob f——sobl sob |——— sobin sob sobin sob f———» 5op 1
—1 load eob [———eobl eob [——— eobin eob eobin eob [——>
0 ol - error eob i
polynomia correction
evaluation it
monitor nl _
Nnﬂ_l\z +1 polyin oddsum
evensum O_evensuml error |——— errorin M
(gl polysum O_suml Q
—1— degin degout [———degO1 5
reset] | datain data datain data
delay done 2 " dout
load mn
B+2 2T +1 o status statusin status —— status
reset active
ol u u reset donel sob nerasures » nerasures
— start done2 load eob nerrors » nerrors
reset done reset done reset done p——] load done3 \ no_<303_m_
evaluation .
load forney's
load load load fail 777 polyin oddsum algorithm
syndrome polynomial euclid's . evensum V_evensum2
X polynomial
calculation expander algorithm scaler polysum V_sum2
din Wout |y \Win polyout —1— degin degout
din e—olyin polyout syndrome degW [—1+— degWin degout n/_n_
Oout [Oin
alphai —{ v4 degO p—1—{ degOin (gl
\ reset active
n sob
—{ load eob
reset done |- W polynomial
alphai evaluation
L—{ load alphaivalid |- polyin oddsum
evensum m
polysum f—oodJW_sum3 fo
erasure jo]
. L—— degin degout ®
list —
erasurein . ©
erasurein N
fail m
vt v total latency: o)
v2 V2
B + 2T + 2TL/N + 17 03]
v3 v3
- m
maxerasures
B+ 2T + 2TL/N + 14]
Lo
o]
data f—ud =
symbol delay >
— din (@)]
LL

Design of a Synthesisable Reed- Solomon ECC Core
4.4 Syndrome block

4.4.1 Algorithm
The syndrome block cal cul ates the syndromes of the codeword to be decoded.

The symboals of the codeword form the coefficients of a polynomia, where the first
symbol received is dg.1 and the last symbol received is do:
d(x) =d, +d,x+d,x* +d,x* +--- +d , x*"*

The syndromes are obtained by evaluating this polynomid at the roots of the
generator polynomid. The generator polynomia has 2T distinct roots (a, a2, a>, ...,
a?"), therefore there are 2T syndromes to be calculated.

The caculation of each syndrome is performed recursvely, using Horner’ s rule:
syndrome =d(@')
:do +d1ai +d2a 2i +"'+dB.1a(B_1)i
:do +ai(d1+a i(dz +"'ai(dB-1)"‘))

The order of evduation of this recurgve cdculation requires the coefficients to be
available in the order ds.1 firdt, through to dy last. This matches perfectly the
transmission order of symbols into the decoder.

4.4.2 Block diagram

clock__,
reset >
'Oad—l— o stare S_I DLE
— 1 8= . S INIT
8 S_COUNT
S_DONE

@
IS S_DONE done
§ *_‘a _ 4|_

din din1 d //
SINIT SINT SINT SINT SINT
az’ T ad a2 at syndrome

I

Figure6 - Syndromeblock diagram

4.4.3 Operation
The dtate table for the syndrome block is shown below:

22 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

state count comment

S_IDLE 0 Say in this ate until load
asserted.

S INIT 0 In this sate, load dg.-1 into each
syndrome register.

S_COUNT 1 Say inthissatefor B — 2 cycles

S_COUNT 2 consuming symbols dg-» to d; and

. .. performing the recursive

S_COUNT B-2 cdculation.

S_DONE B-1 Consume the last symbol, dp, and
perform the last iteration of the
recursive caculation.
If decoding back-to-back
codewords, move straight back to
S INIT, dseS IDLE.

SINT or 0 etc

S IDLE

Table2 - Statetable for syndrome block
The latency of this block (assuming no sdl cycdles) isB + 2 cydes.

45 Erasurelist block

4.5.1 Algorithm

The erasurdist block contains a FIFO like structure to maintain alist of up to 2T
erasure locations,

If the first symbol of the codeword is as an erasure, avaue of a”® " isqueued in the
FIFO. If the next symbol is an erasure, a ~®? queued in the FIFO etc.

In addition to storing the erasure locations, the erasurdist block pre-computes the
following values. Let the total number of erasuresin a codeword be J, then:

vi=J

v2=a’

V3:a-(B-1)J

V4= (2T - J)L/Nif JE2T
=0 otherwise

The v, v2 and v3 vaues are used for the Forney block, the v4 vaue is used by the
Euclid block.

For details of L and N, see section 4.7.3.

23 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

4.5.2 Block diagram

clock—»

reset—»

4|— loadl

load

state | EL_IDLE
EL_COUNTI NG

state
machine

@ unload

counter

loadl

erasureinX

[N
%I—‘O

vlout

loadl

erasureinX

a

o

v2out

loadl

erasureinX

PG

a &b

=

v3out

loadl

erasureinX

(2T) LN

A

(2T-1) LIN — _I_ vdout
L/N ;

E

erasurein unload control logic

erasureinX

alphai
0
alphaivalid

done

state

Figure7 - Erasurelist block diagram

4.5.3 Operation

The gate table for the syndrome block is shown below:

state count alphai comment

EL_IDLE 0 a (B Stay in this sate until
load asserted.

EL_COUNTING |0 a (B Say in thisstate for B

EL_COUNTING |1 a B2 cyclesconsuming

eresure flags es.1 t0 €

EL_COUNTING |[B—2 a @

EL_COUNTING [B—-1 2 ©

EL_IDLE or 0 a (B etc

EL_COUNTI NG

Table3 - Statetablefor erasurelist block

24

5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

The latency of this block (assuming no gdl cycles) isB + 2 cycles.
4.6 Expander block

4.6.1 Algorithm
The purpose of thisblock isto cdculate:

a) The erasurelocator polynomid:
L(X) = (x+a *)(x+a ")(x+a *)---(x+a ")
wherethe st of a ™" represents the locations of Jerasureswhere O£ J < 2T .
b) The modified syndrome polynomid:
T(x) =S(x) %L (x)
where §(x) is the syndrome polynomid.

In both cases, the same basic operation is used:
polyout (x) = polyin(x) X(x +a~%)(x+a ")(x+a *2)---(x+a **)

To cdculate T(x) theinitid vaue loaded into polyin(x) is x).

To caculate S(x) the initid vaue loaded into polyin(x) is 1.

25 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core
4.6.2 Block diagram

clock_,
reset_,
load o stare X! DLE
— | 8% » X_PASS1
B X_RELOAD
X_PASS2

X_PASS1
=2T-1)—I— done

counter

sal: condition:
0: X_IDLE && load
1: X_RELOAD
2: (X_PASS1 || X_PASS2) && (alphai !'=0)
3: (X_PASS1 || X_PASS2) && (alphai == 0)
// polyout
polyin //
sel sel sel sel sel
0 0 0 0 1
/
| l_// | |
y A y
* * * *
/
I/
X_I DLE |
X_PASS1
alphai
TR L | |
o | I I I I
2T-1 2T-2 2 1 0

Figure 8 - Expander block diagram

4.6.3 Operation
The same hardware is used (time multiplexed) to generate both T(x) and L (X).

The state table for the expander block is shown below:

state count comment

X_I DLE 0 Load the polynomid register with
polyin when load asserted, them
move on.

X_PASS1 0

26 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

X_PASS1 1 Stay in this state for 2T cycles
consuming up to 2T erasure
X_PASS1 oT—-1 locations.

X_RELOAD 0 Reload polynomid register with 1.
X_PASS2 0 Stay in this state for 2T cycles
X_PASS2 1 consuming up to 2T erasure
locations.

X_PASS2 2T -1

X_IDLE 0 etc

Table4 - Statetablefor expander block

In the first pass the polynomid regiger isinitidised with §(x), and over the next 2T
clock cyclesthe erasure locations a ¥ are consumed. At the end of 2T cycles, the

polynomid register holds T(x). Doneis asserted at this point to indicate the cyclein
which T(X) isavalladle,

In the second pass the polynomid regigter isinitidised with 1 and over the next 2T
clock cyclesthe erasure locations a * are consumed. At the end of 2T cycles, the
polynomid register holds L (x). Thisvaueishdd until load is asserted again.

The erasure locations are stored in a shift register for re-use in the second pass, so that
they only need inputting once into the block. A vaue of zero isan invalid erasure
location, and so thisis used as padding if there J< 2T.

The latency of this block (assuming no gdl cydes) is 2T+1 cycdles.
4.7 Euclid block

4.7.1 Algorithm

The design of thisblock is heavily leveraged from Gadid Serouss’swork. For further
details see [4] pages 205-241. Some of the diagrams are reproduced here to aid
understanding of our implementation.

W(X) S+(X)
V
1T 1T 1T 11T T.1
W, (%) S i.¥) RTOP
I I Y I N I I
higher order w higher order s
I 1 T 11 I
W(i_l)(X) y S (i)(XB RBOT
[I I Y I B
Wg(X) Sg(X)
| 2T+2 >

Figure9 - Data structurefor Euclidean computation

This data sructure efficiently holds four polynomids. The maximum degree of each
polynomid is 2T (so it takes up 2T+1 register dots). However, the dgorithmis such

27 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

that asthe degree of si(X) increases, so the degree of w;(x) decreases. Thusitis
possible to pack both polynomidsinto 2T+2 register dots.

The following procedure describes the computation performed. Again, in [4] there are
many pages of mathematica proof and explanation.

Procedure E2: Extended Euclidean algorithm (modified version)

1. Initialize
w; ()= X7 s;(x):=1

Wg(X):=T(x) sg(x)=0
Atdl timesmaintaind =degw; (X) - degw,(X).
Initidly d =1
2. Repeat 2T — J times (where J is the number of erasures):

a. set
my .= left most (leading) coefficient of w(X)
n:= left most (leading) coefficient of wi(X)

b. ifng! 0Oandd >0 (i.e the bottom commaisto the left of the top
comma), then
swap RTOP and RBOT

swap nr and g

c. ifmg! O, then set
W, (X) = mw, (X) - X mw, (X)
S T(X) =MmSq (X) - deBS B(X)

d. shift RBOT (and its comma) one position to the left.
3. output wg(X) asw(x) and st(x) as s (X).

This differs from Gadiel’ s procedure in the following aspects.
i. Weinitidisewith T(x) rather than §(x)
ii. Thenumber of iterationsis reduced from 2T to 2T - J.
iii. Thedgnof d isreversed (thisis purely cosmetic).

In Gadie’ simplementation, the data structure for the Euclidean computetion is

exactly 2T+ 2 dotswide and there are O(2T) functiond units (referred to as ST cdlls).
Each ST cdll contains an adder and amultiplier. A basic iteration of procedure E2 can
be started every three cycles. The multiplier is busy in two of these cycles, and the
third is overhead. A new Euclidean computation can be started every O(6T) cycles,
and the overdl latency is O(12T) cycles

28 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

4.7.2 Basic cell design

The god for our badic cdl design isto maximize throughput and minimize latency.
Consequently, our basic cdll design contains an adder and two multipliers. With
O(2T) of these basic cells, an iteration of procedure E2 can be started every cycle,
which results in a throughput and latency of O(2T) cycles. Our basic cell isillugtrated
in Figure 10.

swap
ctop. cbot (ubnequal O+swap. ut nequal 0) . (ct op+cbot)

to
ut . 0 0
opl bot }J newt op
ub
) ctop. cbot 1
2\ prodl
ctop C*J
' swap
bot 1) newt op
) op2 ctop |y
t op newct op
cbot
(+>— sum
b\ ctop L
ut o, newcbot
o) op3 chot
b
Y N 1Y newbot " swap
ct op. chot Gle 0
) prod2
D ctop. chot A
bot \
o op4 top o, newbot
t op o
bot
ctop (ubnequal O+swap. ut nequal 0) . (ct op+cbot)

Figure 10 - Euclid cell design

This purely combinatorid logic handles steps (), (b) and (c) in the procedure E2
smultaneoudy.

The following sgnas are passed into thislogic:

- top —thevdue of the top polynomid coefficient

- ctop —flag to indicate whether the coefficient isleft (0) or right (1) of the comma

- bot —the vdue of the bottom polynomia coefficient

- chot —flag to indicate whether the coefficient isleft (0) or right (1) of the comma

- Uut—corresponds to ny at the sart of step (), prior to any swapping.

- ub—corresponds to g at the start of step (), prior to any swapping.

- swap —the condition tested in step (b), set tooneif ng 1 Oand d > O prior to any
swapping.

- ubnequa0— st to oneif g 1 O, prior to any swapping

- utnequal0— st tooneif my* O, prior to any swapping

The main function of the cdl isto implement the computation of step (C):
W, (X) = mw, (X) - X' mw, (X)
S T(X) =MmSq (X) - deBS B(X)

Let i represent the index number the dot in RTOP and RBOT in Figure 9 (with an
index of O being a the far right hand side).

29 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

Let top; bethevaue stored in dot i of RTOP.

Let bot; be the vdlue sored in dot i of RBOT.

We define the fallowing shorthand notation:

a =m, >hot,
b =m; >top,
C =m Aop
d. = m, >bot,

Given the layout of the polynomias in the registers, multiplication factor x° is
obtained trivialy due to the dignment of the polynomids. Although procedure E2

specifies subtraction, thisthe same as addition in aGaoisfield, and so(a, - by) isthe
sameas (b - a).

Consider the case where no swap occurs:

topm+4

to pm+3 topm+2

topm+1 tOpm

bot,.,

botn+3 botm+2

bo¥n+l bo‘n

topm+4

to pm+3 Cm+2

Cm+1 - Cm -
d

m+1 m

8nig "
b

mz4

am+3 h a
b m+2
m+3

bot.., | bot,

Figure 11 - Euclid cell operation - no swap occurs

step
a,b,c

step d

From thisdiagram it is possible to verify that the logic in Figure 10 does indeed
implement the correct logic:

position | mtr4andm+3 | m+2 m+ landm
ctop 0 1 1

chot 0 0 1

swap 0 0 0

opl ut ut ut

op2 bot top top

op3 ub ut ub

op4 top bot bot

prodl ut.bot=a ut.top=c ut.top=c
prod2 ub.top=b ut.bot=a ub.bot=d
sum a+b at+c c+d
newtop | top prodl=_c sum=c+ d
newbot | sum=a+b prod2 = a bot

Now consider the case where a swap occurs:

30

5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

to pm+3 topm+2

top,., | top,

botn+3 botm+2

bo¥n+l bo‘n

bot,.s | d

m+2

dm+1 - m"
C

m+1 m

B - b
a m+2

m+3

top,,,, | top,

Figure 12 - Euclid cell operation — swap occurs

step
a,b,c

step d

From thisdiagram it is possible to verify thet the logic in Figure 10 does indeed
implement the correct logic:

position | mtr4andm+3 | m+2 m+ landm
ctop 0 0 1

chot 0 1 1

swap 1 1 1

opl ut ub ut

op2 bot bot top

op3 ub ub ub

op4 top top bot

prodl ut.bot=a ub.bot=d ut.top=c
prod2 ub.top=b ub.top=b ub.bot=d
sum a+b b+d c+d
newtop | bot prodl=d sum=c+ d
newbot | sum= a+b prod2 = b top

Onefind complication isthat the computation in step (€) of procedure E2 is
conditiond on (g * 0) after the swap. Thisisachieved by adding an additiond load
condition to the find multiplexor used to generate newtop and newtop. In our design
the combinatoria cdl handles steps (a), (b) and (c) smultaneoudy, and o thisload

condition (logicdly) expands to:
load = swapx(m, * 0) + swapx(m * 0)

For convenience, define the following:

a=(m?* 0

b=(m;* 0)

c=(d >0)

Then,

swap =bx

swap=b+c

load = (b +c) % +(bxc)»xa
=bb+b>xc+bxcxa

=bxc+cxa)

31

5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

This can be smplified further by noting thet my is never zero. Theinitia vaue for my
is 1 because w, (x) = x*" . The only time the value of my changesis following a swap,
when it is updated from g, which will be non-zero or the swap would not happen.
Thus, subdituting a = 1:
load = b Xc +c)
=b

For historic reasons® the condition we actudly usefor load is
load = (my * 0) +swapxm. * 0)
=b+bx>a
=b
The second part of this expression is actudly redundant, but does not affect the logica

operation of the system. Asthe design is now frozen, and thereisno logica problem,
we have not changed this.

4.7.3 Cell sharing

If the throughput of the Euclidean computation O(2T) is less than the code length B,
then the decoder throughput will not be limited by the Euclid stage. In certain
gpplications, where overal latency is not criticd, it may be advantageous to alow the
Euclidean computation be spread over additiond cycles, if this reduces the
implementation sSize. This can be achieved by adlowing abasic cdl to be shared
between multiple dots in the data structure. For example, by sharing acell between
two dots, the total number of cellsrequired is halved, and the computation time and
latency will increase to O(4T).

In generd, procedure E2 requires O(2T ~ 2T~ 2) = O(8T?) multiplications, regardiess
of how it isimplemented. Since our basic cell contains two multipliers, a
configuration with N basic cdlswill complete the computation in O(4T2/N) cycles.

The number of computation cdlls can be configured a synthesis time by the synthesis
parameter N. There are severa congraints on N, but the main oneisthat it must bea
factor of the width of the data Structure.

The width of the data structure is controlled by a second synthesis parameter, L,
whereL 3 2T+2.If L = 2T+ 2, the data sructureisidentica to that shown in Figure 9.
If L > 2T+ 2, then some redundant cells are added. The configuration used for the
RS(160, 128, T=16) code is shown in Figure 13.

1 Anoversight that only cameto light as | was writing this documentation.

32 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

L = 36 slots

A

degWtop = 2T+1 =33

' N

v

>

rT 17T 17 17T 17 17 17T 17 17T 17 17T 17T 17T 1T T 17T T 1T T T T T T T T T T T T T T T
1000000O0OO0O0O0O0O0OO0OO0OO0OO0OO0OOOOOOOOOODODODODOOOOO

1

T T T T T T T R Y B B B BB
N/ NI/ N/ N/ NIZ NZ NI/ NI/Z N/ N/ N[/ \]

/

cell, cell cell cell cell cell cell cell cell cell cell cell

/1IN /1N /1IN /1N /1IN /1N /TN /1N /[N /[\ /[\ /]
M T U U O U I O O O B O

\
|

Ts%T3(I)T2?TzelzTz{Tzelst?Tzlthz?TZsz%Tz?TlsIaTltlquTlelTlisTultTllele%Tul) TgI T8| T7| Tfi T5| T4| T3| T2| T1| T4 O | 0 | 0

0
|

\4

&
<

degWhbot = 2T = 32 2

Example:
L=36

N =12
T=16 dil’{
<—

Figure 13 - Example of the modified Euclicean data structure

It turns out that it is convenient to locate the redundant cells between the polynomids,
rather than at either end. This means their locations move as the computation
progresses. However, this does not affect the results.

Theinitidisation values for the top and bottom registers are also shown in Figure 13.

During the computation following variables are maintained:
degWtop — the space occupied by wr(x) (initidly 2T+1)
degWhot — the space occupied by wg(x) (initidly 2T)

At the end of the computation, wg(X) isoutput asw(x) and s t(x) isoutput ass (x). The
degrees of these polynomids are cdculated as follows:

degW = deg\Whot

degO = 2T + 2 — degWtop

At aregiger-trander levd, things get more involved. There have been examplesin the
literature of Smilar hardware sharing schemes, but dl of these required an additiona
overhead in terms of multiplexors to route the data values appropriately. In our
implementation we have managed to diminate the overhead, by forming ringlets of
registers. Data vaues circulate around these ringlets, and the computation cdll is
connected to afixed point. Thisisillustrated in Figure 14.

33 5/24/2001 10:02 AM

-

Design of a Synthesisable Reed- Solomon ECC Core

Iy 1y by Iy

CELC Ll
| piiapnly il
R

Figure 14 - Implementation of euclidean computation

Thisexampleisfor L=12 and N=3; each cdl is shared between four dots. The shaded
multiplexors are required to load the initidisation values into the registers. Where the
initidisation vaues are congtants, these multiplexors will be optimised. The other

three multiplexors and three additiona registers implement step (d) of procedure E2,
effectivey shifting the bottom registers on postion left a the end of an iteration.

4.7.4 Operation

Procedure E2 requires basic 2T-J iterations, where J indicates the number of erasures.
In our implementation each iteration is spread over L/N clock cyclesto reduce the
number of basic cdlsfrom L to N. Thus, the number of cyclesto complete the
cdeulaionis (2T - J)" L/N.

The state sequencing of the computation varies dependingon L, N, T and J, but there
are two basic cases to consider:

i. Thetrivid case, where there are (J=2T) erasures.

state countl count2 done degO degW fail
E IDLE 0 0 0 - - -
E IDLE 0 0 1 1 2T 0

Table5 - Statetablefor euclid block (trivial case)

li. Thenontrivid case, wherethere are (J< 2T) erasures.

(thisexample uses L=36, N=12, T=16 and J=7)

state

countl

count?2

one

fail

E IDLE

degO

degW

E CALCING

E CALCING

E CALCING

E CALCING

E CALCING

AIWIN|R|O|O

R[O|IN|[R|O|O

d
0
0
0
0
0
0

34

5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

E CALCING | 5 2 0

E CALCING | 72

0 0
E CALCING | 73 1 0
E CALCING | 74 2 0 - - -
E IDLE 0 0 1 2T+2- degWhot | (degWhbot
degWtop >=
degWtop)

Table6 - Statetablefor euclid block (non-trivial case)

4.8 Delay block

The latency through the Eudlid block is (2T-J)L/N cycles, which varies depending on
the number of erasures. To ensure the decoder as a whole has congtant latency, the
next block (the scaler) istriggered (2T) L/N +1cycles after the Euclidean
computation starts, rather than on its completion. This achieved using the delay block.

4.9 Scaler block

4.9.1 Algorithm

The roots of the error locator polynomid s (x) indicate the error locations. An
exhaugtive search is used to determine these roots. This procedure is known as the
Chien search.

The convention with Reed- Solomon codes is that the on-the-wire ordering is such that
the first symbol represents the coefficient of the x®* term, and the last symbol
represents the coefficient of the x° term. It is advantageous to synchronise the Chien
search with this tranamission order, since this minimises buffering within the decoder
and reduces overdl latency.

The Chien search involves evaluating s () for x1 {a ®?...a (9},

For afull length code, B = 2.1, and so the first location checked is
x=g (D =g @09 —5@"-95-@"-)-) —5

The next location would be:
\"% W W
X:a'(B'z) :a'((2 '1)'2):a(2 '1)a'((2 '1)'2):a2

and so on. The classic approach to implementing the Chien search uses the following:
S (X) =S, +S X+S,X° +...+S X'
s@)=s,+sa+sa’+...+s,a’"
s@’)=s,+tsa’+sa‘+...+sa’
s@%=s,+s@’+sa’+.+sa”
etc

Strictly speaking, s (x) can be of degree at most T, and so there is some redundancy
here. However, the other polynomials w(x) and L (x) can be of degree 2T, and since
the scaler block is shared, we assume any of the polynomials can be of degree 2T.

35 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

This computation can be implemented by 2T+ 1 stages, where each sage includes a
register, a constant multiplier and an adder, connected as shown in Figure 15.

load

from
stage stage
i-1 i+1

stagei

Figure 15 - Polynomial evaluation cell

Theregigers are initidised with the coefficients of s (x). Over successive clock
cycles, thei™ coefficient is repeatedly multiplied bya ", and the results summed.

One clock cycle after loading, the sumwill be s (@) ; thiswill be zero if thereisan
error in the first symbol of the codeword. In generd, after N clocks, the sum will be
s (@) ; thiswill be zeroif thereis an error in the N™ symbol of the codeword.

So far we have described the operation for full-length codes, where B =2" - 1.1n
genera, we aso need to handle shortened codes, where B < 2% - 1.

The above hardware till works in this case, but needs 2" - B clock cydesfollowing
initialisation before the first useful result s (a~®) isobtained. Thisis effectively

dead time, and limits the overdl throughput of the decoder, preventing it from
decoding back-to-back codewords. Note that even in the idedl case of afull-length

code, there is one cycle of dead time. Thisis because the initidisation valueiss (a °)
which does not correspond to alocation within the codeword.

For a shortened-code, the first location checked should be
X :a-(B-l) :a(2w-l)a -(B-1) -a V. B

The next location would be:

W W
x=q (B2 =g @ -D5-(82 5281

and so on.

To diminate the dead time, we need to scae the coefficients of s (x) to effectively
dlow the Chien search to start immediately at postion B-1. Thisscding is

sraightforward: the i coefficient of s (x) needsscalingby a @ -®' . A bank of 2T
condtant multipliers can achieve thisin one cyde.

36 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core
4.9.2 Block diagram

clock —,
reset
SC A
start @ SC_I DLE — 4I_done1
£ state o<
g é > SCIB SC B I done2
SC_C . i2™W-
W multiply by a'?"V-8) sc.c I done3
load _y, -
load
(2T+1)*
in (W+1)
Oin ocomb state
load
@T+1)* —l_‘y muxpoly newpolyout
. (W+1)
Wwin oo wcomb

load
degOin I state

priority | leadingzeros
nonzero encoder

degout

—

load

degWin

Figure 16 - Polynomial scaler block diagram

4.9.3 Operation

The scaer block implements the polynomid scaling described above. There are three
polynomids that need scaling. These are the error locator polynomid s (x) and the

errataevauator polynomid w(x) from the Euclid block, and the erasure locator
polynomidL (x) from the Polynomia Expander block. Once start is asserted, these

are processed over successive clock cycles. The three done signals indicate to
successve blocks when each scaled polynomid (and its true degree) is available.
These dgnaswill be skew by one cycle with respect to each other.

The format of the polynomidss (x) andw (x) from the Eudlid block is somewhat
strange, due to the layout of registers within that block. The Ocomb and Wcomb
functionsin the scaler serveto map s (x) andw (x) to astandard format, illustrated in

Fgure 17. Note that theL (x) polynomid does not require any reformetting.

37 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

_ @T+)(W+1)-1 0

n

o] x Jofo] x Jaf s Jlo] s Jof2] s |

@ Ocomb

Loss Jols JLse JL o | o |

(2T+1)(W)-1 0

(2T+1)(W+1)-1

Lo we Joofof w Jfof we J[af x J..f2] x|

@ Wcomb

P P N o | R P

(2T+1)(W)-1 0

Figure 17 - Reformatting of polynomialsin scaler

Note that the dignment of s (x) and w(x) is such that the polynomids are scded. More
spedificdly, if s(x) isof degree J, then the scale factor isx®™. Similarly, the scdle
factor for w(X) isx®" K. These scale factors are compensated for in the Forney block.

Since the result of the Euclid block is only valid for one cycle, the scaler block
includes regigters to capture the result when available. These are loaded when the load
ggnd isassarted. Theload signd is driven from the done sgnd from the Euclid

block.

The last function performed by the scaler block is to calculate the true degrees of the
polynomids, since the results of the Euclid block may include leading zeros. The
number of leading zerosis counted, using a priority encoder, and thisvaueis
subtracted from the degree output by the Euclid block. The true degrees of the
polynomials are used by the Forney block to detect uncorrectable error patterns.
The latency of thisblock (assuming no gdl cycles) is2 cycles.

4.10 Polynomial evaluation block

4.10.1 Algorithm
Polynomia evaduation is part of the Chien search, as described in section 4.9.1.

We sum the odd and even terms separately, for reasons described in section 4.11.

38 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core
4.10.2 Block diagram

clock
reset
load
g state
£ £ F_IDLE
7 g F_COUNTI NG
[I sob
5 active
g -}
3 F_COUNTI NG eob
polyin
load load load load load load load
32T a2T-1 a27-2 3213 a2 al a0
@ Il @ + evensum
sum
@—// @ I oddsum

Figure 18 - Polynomial evaluation block diagram

4.10.3 Operation
The dtate table for the polyeva block is shown below:

state count comment

F_IDLE X Say in this gate until load
asserted.

F_COUNTI NG 0 Stay in this state for B cycles

F_COUNTI NG 1 while Chien search isbeing

performed. Polynomid is

F_COUNTI NG B-1 evauated a B different values.

F_IDLE or xor0 Loop back tof _count i ng if load

F_COUNTI NG asserted immediately, else return
tof_idle.

Table7 - Statetablefor polynomial evaluation block
The latency of this block (assuming no stdl cycles) is 2 cycles.

39 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core
4.11 Forney block

4.11.1 Algorithm

The Chien search involves smply evauating s (x), w(x) and L (x) for

xI {a ®?...a @) From these values, the Forney equations are used to actualy
caculate the error magnitudes.

The generd form of the Forney equaionsis.

If s (x) =0for some x =a " an error has occurred in symbol i, and the error magnitude
isgiven by:
__w(x)

=— > forx=a"
s'(X) % (X)

If L(x)=0for some x=a"
megnitude is given by:

an erasure has occurred in symbal i, and the erasure

LEMMA 1:If s (x) =0thenitispossbleto obtain xs '(x) by summing @ther the
odd or even power termsof s (X).

PROOF:

We can writes (x) as.

s (X)=s 2TX2T +s 2T-1X2T-1

+ 45 XS, X2 +S X +S

The derivative of s (X) is
S'(X)=2Ts 1, X1 4 (2T - DS 5 X7 2+ 435 ,X°+ 25 X +5S,

Because we are working in a Galois fied, the following hold true:
(2n)s i+1Xi = (n + n)s i+1Xi = (O)S i+1Xi = 0
(2n+1)s i+1Xi =(n+n+Ds i+1Xi =(0+Ds i+1Xi =S i+1xi

Therefore, s’ (X) can be smplified to:
S'(X) =S,y X P+ +s X +S,

and so,

XS '(X) =S 5 X1

+..- 45 X +S X
Thus, we can obtain xs '(x) by smply summing the odd terms ofs (x) .

Observe dso that we are only interested in s *(x) where s (x) =0. Thismeansthat the
sum of the odd terms must equd the sum of the even terms.

40 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

Hence, we can dso obtain xs '(x) by Smply summing the even terms of s (x) .

LEMMA 2: The scde factors resulting from the misdignment the polynomias s (x)
and w(x) when loaded into the polynomia evauation block can be eesily determined:

PROOF:

At the start of the Euclidean computation:
W, (X) = X7
\ degw;(X) =2T
W (X) =T(x)
\ degwy(x)=2T-1

At the end of the Euclidean compuitation, the find degrees of the polynomids are:
degw, (X) = 2T - d;
degwg (X) =2T - 1- dg
degs ;(x) =d;
degs 5 (x) =1+dj

Each iteration of the computation can only increase dr or dg by one, it follows thet
after 2t - Jiteraions
d, +d; =2T-J

d,=2T-J-d,

Thus, a the end of the computation:
degw (x) = degwg(x)
=2T-1- dg
=2T-1-(2T- J-d;)
=d, +J-1
degs (x) = degs 1 (x)
=d,

When polynomias s (x) and w(X) are evauated, we avoid shifting them to the correct
position, hence a scae factor isincluded. More specificdly, if the degree of the
polynomid is d, then the scale factor isx?™9. Therefore,

41 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

VV(X) - X2T- (dr+3- l)W (X)

W (X
\ w(x) :%
S(X)=x""""s (X)
_s(x)
\s(x)= NG
also
xs '(X) = §ODD_OR_EVEN(X)

NG
s x _ S opp oR. even(X)
\s'(x)= N

Also, as

Using the results of Lemma 1 and Lemma 2 we can re-write the Forney equations.

W
TS L
COW) 2T O o1
RS §ODD_OR_EVEN(X) L (x)

X’ W (X)
SﬁODD_OR_ EVEN (X) >4_ (X)

and amilarly:
_w(X
s (L)
_owW(x) xXTY X
XTI TS (X)L onp_o_even(¥)
xJx(x")

s (X) % ODD_OR_EVEL (x)
These equations are directly implemented.

The other function implemented in the Forney block is the detection of uncorrectable
error patterns.

Let nerasures be the number of symbols declared as erasures.

Let nerrors be the number of distinct rootsof s (x) for x1 {a"®™*...a (¥}

42 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

If any of the following conditions arise, then the error pattern is declared
uncorrectable:

The Eudlidean computation terminated mid-division (i.e. bottom commais digned
with, or to the right of, the top comma).

nerasures exceeds the decoder maxerasures inpu.

nerrors differsfrom the true degree of s (x).

nerasures+ 2 * nerrors> 2T

A root of s (x) co-incideswith aroot of L (x) (i.e. the samelocation is both an
error and an erasure)

43 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core
4.11.2 Block diagram

sobl sob3
erasurecount
vl —I—-—l erasurecountstable I
nerasures
] !
sob3
degO3
1\ | degOstable
Ll
sob3 ~|—status
fail 1y | failstable
clock—p
o
reset__y,
— errorcount3 I
— I nerrors
H— coincidentroot3
| | | | | |
sobl 1 1 1 1 1 1 sob
| | | | | |
eobl I I I I I I eob
activel I I I I I I active
O_suml =0 I I I I
O_evensuml }J I I
O_value3

z 1 1 1

V_sum2 =0 1 1 1
inversion

ji ey @D

V_evensumz——] N4

V_value3 error4 errors erroré

error

W_sum3

Figure 19 - Forney block diagram

4.11.3 Operation

This block isimplemented as a heavily pipelined datagpath, driven by the three
polynomid evauation blocks for s (X), L (X) and w(X). Thereis one cycle skew
between each of these blocks, due to the scaler, thus the results feed into the datapath
at different stages.

44 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

The firg multiplier corresponds to the multiplication on the denominator of the
Fourney equations. The arguments are sdected according to whether this symbol isan
error or an erasure (it cannot be both). Thisis followed by an inverson and then two
further multiplications, one to multiply in w(x) and the other to multiply in the
correction factor x”. Thefind multiplexor ensures that a zero error vaue is output
when there isno error or erasure.

The erasurelist block pre-computes the following values (for J erasures)
vi=J
v2=a’
\/3 =a’ (B-1J

The correction factor v_factor2 is calculated recursively, the sequence being:
a -(B-1)J a (B-2)J a -(B-3)J ..a -2 a -J 1

It can be seen by inspection that this correspondsto x” for xT {a ®?Y...a 9},
Some brief comments on the timing condraints:

Thesgnasvl, v2, v3 are generated by the erasurelist block and change when it's
done signdl is asserted. They are then held for aminimum of B cycles. The Forney
block samples them on sobl, thus:
Congraint 1. erasurelist.done forney.sobl £ B cycles
(2T +1) + (2TL/IN+ 1) + 4 £ B cycles

The ssgnas degO3, fail are generated by the Euclid block and change when it's done
sggnd isasserted. They are them held for aminimum of B cycles. The Forney block
samples them on sob3, thus:

Congtraint 2. Euclid.doneb forney.sob3 £ B cycles.
(2TL/N +1) + 6 £ B cycles

Gengrdly condrant 1 will be the limiting factor.

The nerasures, nerrors and status outputs of the Forney block change on eob3, and
thus are vdid 3 cycles prior to the eob output. They are then held for aminimum of B
cycles.

The latency of thisblock (assuming no gdl cycles) is6 cycles.

4.12 Symbol delay block

Thisblock istrivid — it introduces a delay on the symbol data, to compensate for the
ddlay through the previous blocks in the decoder. It isimplemented as a symbol-wide
shift regigter.

This needsto include:
- B+2 stagesto compensate for the syndrome block
- 2T+1 stages to compensate for the polynomid expander block

45 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

- (2TL/N)+1 stages to compensate for the Euclid/delay blocks
- 2 stagesto compensate for the scaler block

- 2 gtagesto compensate for the polynomia evauation block

- 6 stagesto compensate for the Forney block

Totdling these up yields B+2T+(2TL/N)+14 stages.
For B=160, T=16. L=36 and N=12 thisworks out at 302 stages.

4.13 Error correction block

Thisblock istrivid — error correction is done by X ORing the delayed input data with
the error output of the Forney block.

The latency of this block (assuming no sdl cydes) is 1 cycle.
4.14 Monitor block

4.14.1 Algorithm

Asan additional check, the decoder re-cal culates the syndromes over each sequence
of symbols output by the decoder. This check is performed by the find pipeline stage
within the decoder, called the monitor block.

If the Status code was 0 to 3, the sequence of symbols output by the decoder should
aways correspond to avalid codeword (i.e. the syndromes will be zero). If thisis not
the case, the status code is replaced with 6.

If the status code was 4 or 5, the sequence of symbols output by the decoder is
unlikely to be avalid codeword (i.e. one or more of the syndromes should be non
zero). If thisis not the case, the status code is replaced with 7.

The status codes 6 and 7 should aways be treated as uncorrectable.

46 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core
4.14.2 Block diagram

clock —»
reset —»
din // | | d
/ | |
sobin sobin sobin sobin sobin
aZT a2T-l a3 a2 al
// syndromel
statusin —I— status
activein I L I active
sobin]] sob
| |
; | |
eobin | | eob

Figure 20 - Monitor block diagram

4.14.3 Operation

This block isimplemented as a pipelined datapath. The status code from the Forney
block is modified asfollows:

if (eobl == 1)
if ((statusin < 4) && (syndronmel != 0))
status <= 6;
else if ((statusin >= 4) && (syndronmel == 0))
status <= 7;
el se
status <= statusin;

The latency of this block (assuming no sdl cycles) is2 cycles.

47 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

5 Synthesis
5.1 Source file layout

ReadMe
rs/ Readive

Parameter configuration
rs/ parans. v

Verilog sourcefiles
rs/ encoder.v
rs/ decoder.v
rs/del ay.v
rs/erasurelist.v
rs/euclid.v
rs/ expander. v
rs/fourney.v
rs/ messagedat a
rs/monitor.v
rs/ pol yeval . v
rs/scaler.v
rs/ synmbol del ay. v
rs/ syndrone. v
rs/ EuclidCell.v
rs/EuclidCell _fn.v
rs/ EuclidCell _fn_body.v
rs/ GFAdd. v
rs/ GFAdd_fn.v
rs/ GFAdd_f n_body. v
rs/ G-l nverse. v
rs/ G-lnverse_fn.v
rs/ GFl nverse_fn_body.v
rs/GFMul t . v
rs/GFMult _fn.v
rs/GFMul t _fn_body. v
rs/GFPt oT_fn.v

Synthesis control scripts
r s/ RUNSYN
rs/ reedsol onon. scri pt

Galoisarithmetic synthetic library
gal oi s/ GALO S_GFAdd_nod. v
gal oi s/ GALO S_GFMul t _nod. v
gal oi s/ anal yze. scri pt
gal oi s/ gal ois.s
gal oi s/ gal oi s. sl db

5.2 Configuring the design
The design configuration is contained inthe par ans. v file

5.2.1 Parameters

The following parameters define the pecific Reed- Solomon code:
T - The code error correction capability.

48 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

B - The code length.

WIDTH - Thewidth (in bits) of a code symboal.

PRIMITIVE - The primitive field generator polynomid for the code. The
binary representation of this number is used to form the field generator
polynomid.

GENERATOR - The code generator polynomiad whose first root must be a.
Thisvaue can be cdculated usng the Gener at e. ¢ program.

The following parameters configure the layout of the registersin the Euclid block, as
described in section 4.7.3.

L - The number of logica stagesin the Eudlid block.

N - The number of physicd stagesin the Euclid block.

For example, for an RS(160, 128, T=16) code over the gdoisfied
GF (2°) generated from p(x) = ¥® + x* +x® +x* +1 =0 the correct vaues are:

g

L
N
T
W DTH = 8

PRI M Tl VE = 285

B = 160

GENERATOR = 256' he81dbd328ef 6e80f 2b52a4ee019e0d77
9ee086e3d2a3326b281b68f d18ef d82d

There are severd condraintson L and N:
L must be even
L mustbe?® 2T + 2 (thesze of Gadiels aray)
N must be lessthan L
N must be afactor of L
(2T +1) + (2TL/N + 1) + 4 £ B cycles(see condraint 1 in section 4.11.3)
(2TL/N + 1) + 6 £ B cycles (see condraint 2 in section 4.11.3)

Examplel: B=160, T=16,L =36, N =12
= 134 £ 160
= thisisacceptable

Example2: B=160, T=16,L =36,N=9
= 165> 160
= thisis unacceptable (bresks congtraint 1)

5.2.2 Clock enable

To configure the design with a synchronous clock enable, define the following macro
inthepar ans. v file

“define ALWAYS_AT_POSEDGE_CLOCK al ways @ posedge clock) if (clocken == 1)

To configure the desgn without a synchronous clock enable, define the following
mecro inthepar ans. v file

“define ALWAYS_AT_POSEDGE_CLOCK al ways @ posedge cl ock)

49 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

De-assarting the clock enable essentidly freezes the state of the whole design, rather
like a gated clock.

Note that including a synchronous clock enable can add consderably (10%-20%) to
the overd| area, sSince a 2-input multiplexor needs to be added to the front of each
flip-flop. This overhead might be reduced if the target ASIC library includes flip-flops
with abuilt-in clock enable.

5.2.3 Synthetic libraries

The Gdois fidd addition and multiplication operator implementations supplied from a
used defined synthetic library. This has two advantages:

i. Aleve of hierarchy is created automaticaly for each synthetic operator,
thus reducing the number of gates a any one level. This has adramatic
(approximately 80%) reduction in synthesistime.

ii. Congants are automatically propagated into these operators, alowing
congtant multipliers to be optimised automaticaly (as described in section
2.3.3)

A verilog function is mapped to a synthetic operator using the Synopsys
map_t o_oper at or directive:

function [WDTH - 1 : 0] GFAdd_fn

/1 synopsys map_to_operator gfadd_op
/'l synopsys return_port_nanme X
“include "GFAdd_fn_body. v"

function [WDTH - 1 : 0] GFMult_fn

/'l synopsys map_to_operator gfnult_op
/1 synopsys return_port_name x
“include "GFMult _fn_body. v"

An dterndive isto compile the adder and multiplier as sandaone modules, and then
use the Synopsysmap_t o_nodul e directive. The—boundary_opti mi zati on flagto
the Synopsys compile command should be used, asin this case constant propagation
does not occur automatically. The results achieved are Smilar, but with an increased
compiletime.

5.3 Synthesising the design

5.3.1 Build script

To synthesise the design, make sure you have avaid . synopsys_dc. set up filein
your home directory. Then execute the following:

cd galois

./dc_shell —f analyze.script

cd rs

mkdi r WORK

./ RUNSYN

cd run_<date>

cat errors.txt (there should be none)
cat warnings.txt (there will be a few)

For reference, here is the current RUNSYN file

#!/bi n/csh

create a results directory

50 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core
set dir=run_"date +"%%% _%HYM" "

run synopsys
dc_shell -f reedsol onon.script | tee build.log

nove results files to results directory

mkdir $dir

nmv build.log comand. | og $dir

mv *.area *.timng *.routing *.cells *.db *.vg $dir

perform some post processing of results
cd $dir

echo Checking for errors:
grep "Error" build.log | tee errors.log

echo Checking for warnings:
grep Warning build.log | tee warnings.|log

printf "% 12s %l0s %l0s %l0s %l0s %l2s\n" "nodul e" "conb area" "reg area" "net
area" "total area" "timng" | tee summary. | og

foreach file (“/bin/ls *. area)

set i="echo $file | cut -d'.' -f1

set nane="echo $i | cut -d' _' -f1°

set al="cat ${i}.area | grep "Conbinational area" | cut -d:' -f2| cut -
d." -f1 | awk '{print $1}'°

set a2="cat ${i}.area | grep "Nonconbinational area" | cut -d:' -f2| cut -
d.'" -f1 | awk '"{print $1}'°

set a3="cat ${i}.area | grep "Net Interconnect area" | cut -d':' -f2 | cut -
d.'" -f1 | awk '"{print $1}'°

set a4="cat ${i}.area | grep "Total cell area" | cut -d:' -f2| cut -d.' -

fl1 | awk '{print $1}'"
set cp="cat ${i}.timng | grep "data arrival tinme" | head -1 | awk '{print
$4} ' °

printf "% 12s %0s %0s %10s %0s %2s\n" $nane $al $a2 $a3 $a4 $cp | tee -a
sunmary. | og

end

For reference, hereisthe current r eedsol onon. scri pt file

/*
* EQN-10 - warning: Defining new variable
* VAL-3 - warning: Paraneter/generic value exceeds the threshold | ength 20
*/

suppress_errors = { EQN-10 VAL-3 }

hi gh_fanout _net _threshold = 0

search_path = search_path + ../galois
define_design_lib GALO S -path ../galois
synthetic_library = synthetic_library + "gal ois.sldb"
link_library = link_library + "galois.sldb"
define_design_lib WORK -path ./WORK

hl o_resource_al | ocati on = none

hl o_resource_i npl ementati on = area_only

foreach (DESIGN, { GFAdd, GFMult, GFlnverse }) {
anal yze -format verilog DESIGN + ".v"
el abor at e DESI GN
set _max_area O
set _fix_nultiple_port_nets -al
check_desi gn
conpil e

}

foreach (DESIGN, { EuclidCell }) {
anal yze -format verilog DESIGN +
el abor ate DESI GN
set _max_area 0
set _fix_nultiple_port_nets -al
uni qui fy
check_design
conpile

51 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

set _dont _touch current_design

foreach (DESIGN, { delay pol yeval expander erasurelist scaler fourney nonitor
syndrone euclid synmbol del ay decoder encoder }) {
anal yze -format verilog DESIGN + ".v"

}

foreach (DESIGN, { encoder decoder }) {
el abor at e DESI GN
uni qui fy
create_clock -period 1000 cl ock
set _max_area 0
set _fix_nultiple_port_nets -al
check_desi gn
conpil e
write -format db -hierarchy -output DESIGN + ".db"
write -format verilog -hierarchy -output DESIGN + ".vg"
report_timng -nets > DESIGN + ".tim ng"
report_area > DESIGN + ".area"
report_routability > DESIGN + ".routing"
report_cell > DESIGN + ".cells"

}

dl = "syndrone"

d2 = "erasurelist"

d3 = "expander"

d4 = "euclid"

d5 = "del ay"

dé = "euclid"

d7 = "scaler"

d8 = "pol yeval _0"

d9 = "polyeval _1"

d10 = "pol yeval _2"

dl1l = "fourney"

d12 = "synbol del ay"

d13 = "monitor"

foreach (DESIGN, { dl1 d2 d3 d4 d5 d6 d7 d8 d9 di10 dil1 di2 di3 }) {
echo DESI GN
current _desi gn DESIGN
report_timng -nets > DESIGN + ".tim ng"
report_area > DESIGN + ".area"
report_routability > DESIGN + ".routing"
report_cell > DESIGN + ".cells"

}

qui t

5.3.2 Results

The following results were obtained for the RS(160, 128, T=16) code, targeting the
Agere MACO libraries.

subnmodul e conb area reg area net area total area timng
del ay 175 160 11 335 0.34
erasureli st 3619 6624 352 10243 0.39
euclid 31158 13128 1794 44286 0. 68
expander 30819 8625 1390 39444 1.08
f our ney 7235 3360 422 10595 0. 39
noni t or 11253 4496 487 15749 0.39
pol yeval 11360 4993 500 16353 0.34
pol yeval 11360 4993 500 16353 0.34
pol yeval 11360 4993 500 16353 0.34
scal er 17154 13040 1006 30194 0.34
synbol del ay 16912 38656 1329 55568 0.34
syndronme 10948 4552 481 15500 1.38
modul e conmb area reg area net area total area timng
encoder 13299 4560 538 17859 6.78
decoder 163531 107796 8615 271327 13.78

The areafigures are in grids (an Agere metric). For the MACO process, the gate
dengty isquite low (2.55 gates/grid) and so the apparent gate counts are quite high.
The encoder comes out at 7.0K gates and the decoder comes out at 106K gates.

52 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

Moving to their HL200CDE standard cell library, with a gate dengity of 3.23
gates/grid improves matters. The encoder comes out at 5.5K gates and the decoder

comes out at 84K gates.
If the synchronous clock enable is removed, and the standard cdll library used, the

areais sgnificantly less. The encoder comes out a 5.0K gates and the decoder comes
out at 73K gates.

53 5/24/2001 10:02 AM

Design of a Synthesisable Reed- Solomon ECC Core

6 References

[1] Veification of a Synthes sable Reed- Solomon ECC Core, HPL Technical
Report HPL-2001-125, David Banks, May 2001.

[2] Introduction to finite fields and their applications, Rudolf Lidl and Hardd
Niederreiter, Cambridge University Press, 1994,

[3] Error Control Coding, Shu Lin and Danid JCostelo, J., Prentice Hdl, 1983.

[4] Reed-Solomon codes and their applications, edited by Stephen B Wicker and
Vijay K Bhargava, |IEEE Press, 1994.

54 5/24/2001 10:02 AM

