

Design of a Synthesisable Reed-Solomon
ECC Core

David Banks
Publishing Systems and Solutions Laboratory
HP Laboratories Bristol
HPL-2001-124

E-mail: dmb@hplb.hpl.hp.com

Reed-Solomon,
error correction,
verilog,
synthesis,
synthesisable,
hardware, ECC,
Galois field

In this report we describe the design of a Reed-Solomon error
correction core that supports errors and erasures decoding. In a
second report HPL-2001-125 we describe the verification of this core.

The core consists of separate encoder and decoder blocks that can be
operated independently, each with symbol wide data paths. These
blocks have sufficient throughput to handle back-to-back codewords,
and the overall latency is typically less than two codewords.

The design is expressed in the Verilog hardware description language
(Verilog HDL), and is fully synthesisable. The design supports a wide
range of different Reed-Solomon codes, with the choice of a particular
code being made at synthesis time. This approach has a number of
advantages that aid shorter product design cycles, by allowing the
changes in the choice of code and target technology to be made late in
the design cycle. Because of its flexibility, the design could be reused
across a wide range of products with differing coding requirements.

A sample design configured for a RS(160, 128,T=16) code in GF(2^8)
was targeted to the Agere HL200CDE 0.20um standard cell library.
This resulted in a gate count of 72K gates, an encoder latency of 2
cycles and a decoder latency of 305 cycles. The design could be
clocked at 70MHz.

 Copyright Hewlett-Packard Company 2001 Approved for External Publication

Design of a Synthesisable Reed-Solomon ECC Core

 2 5/24/2001 10:02 AM

1 INTRODUCTION..5

2 GALOIS FIELD OPERATIONS...6

2.1 Field generation..6

2.2 Representations ..6
2.2.1 Power representation...6
2.2.2 Tupple representation..6
2.2.3 Binary representation..7

2.3 Arithmetic operations ..7
2.3.1 Addition ..7
2.3.2 Full multiplication...8
2.3.3 Constant multiplication...10
2.3.4 Inversion..10

2.4 Representation conversion..11
2.4.1 Power to tupple conversion...11
2.4.2 Tupple to power conversion..12

3 ENCODER ... 13

3.1 Algorithm..13

3.2 Interface ..13

3.3 Block diagram ..15

3.4 Operation..15

4 DECODER ... 17

4.1 Algorithm..17

4.2 Interface ..18

4.3 Block diagram ..21

4.4 Syndrome block..22
4.4.1 Algorithm..22
4.4.2 Block diagram...22
4.4.3 Operation...22

4.5 Erasurelist block ..23
4.5.1 Algorithm..23
4.5.2 Block diagram...24
4.5.3 Operation...24

Design of a Synthesisable Reed-Solomon ECC Core

 3 5/24/2001 10:02 AM

4.6 Expander block ..25
4.6.1 Algorithm..25
4.6.2 Block diagram...26
4.6.3 Operation...26

4.7 Euclid block ..27
4.7.1 Algorithm..27
4.7.2 Basic cell design..29
4.7.3 Cell sharing ...32
4.7.4 Operation...34

4.8 Delay block..35

4.9 Scaler block...35
4.9.1 Algorithm..35
4.9.2 Block diagram...37
4.9.3 Operation...37

4.10 Polynomial evaluation block ...38
4.10.1 Algorithm..38
4.10.2 Block diagram...39
4.10.3 Operation...39

4.11 Forney block ...40
4.11.1 Algorithm..40
4.11.2 Block diagram...44
4.11.3 Operation...44

4.12 Symbol delay block ..45

4.13 Error correction block...46

4.14 Monitor block ...46
4.14.1 Algorithm..46
4.14.2 Block diagram...47
4.14.3 Operation...47

5 SYNTHESIS... 48

5.1 Source file layout ..48

5.2 Configuring the design ..48
5.2.1 Parameters ...48
5.2.2 Clock enable..49
5.2.3 Synthetic libraries ...50

5.3 Synthesising the design..50
5.3.1 Build script ..50
5.3.2 Results ...52

6 REFERENCES.. 54

Design of a Synthesisable Reed-Solomon ECC Core

 4 5/24/2001 10:02 AM

Figure 1 - GF(24) Multiplier ..9
Figure 2 - Encoder timing diagram..14
Figure 3 - Encoder block diagram..15
Figure 4 - Decoder timing diagram..19
Figure 5 - Decoder block diagram ...21
Figure 6 - Syndrome block diagram ..22
Figure 7 - Erasurelist block diagram..24
Figure 8 - Expander block diagram..26
Figure 9 - Data structure for Euclidean computation...27
Figure 10 - Euclid cell design ..29
Figure 11 - Euclid cell operation - no swap occurs ...30
Figure 12 - Euclid cell operation – swap occurs ..31
Figure 13 - Example of the modified Euclidean data structure33
Figure 14 - Implementation of euclidean computation..34
Figure 15 - Polynomial evaluation cell ..36
Figure 16 - Polynomial scaler block diagram..37
Figure 17 - Reformatting of polynomials in scaler..38
Figure 18 - Polynomial evaluation block diagram...39
Figure 19 - Forney block diagram ...44
Figure 20 - Monitor block diagram..47

Table 1 - State table for the encoder block ..16
Table 2 - State table for syndrome block ...23
Table 3 - State table for erasurelist block ..24
Table 4 - State table for expander block ..27
Table 5 - State table for euclid block (trivial case)..34
Table 6 - State table for euclid block (non-trivial case)...35
Table 7 - State table for polynomial evaluation block ...39

Design of a Synthesisable Reed-Solomon ECC Core

 5 5/24/2001 10:02 AM

1 Introduction

This document describes the designof the Reed-Solomon ECC block designed by HP
Labs Bristol. For further details on the verification of the, please refer to [1]

A Reed Solomon code of the form RS(B, B - 2T, T) has the following properties:
• Codewords are blocks of B symbols, where B – 2T of these symbols are

information symbols, and the remaining 2T are check symbols.
• Symbols are sequences of W bits.
• It can correct up to T symbol errors; an error is a corruption whose location and

magnitude are unknowns.
• It can correct up to 2T symbol erasures; an erasure is a corruption whose location

is known, but whose magnitude is unknown.
• It can correct any combination of E symbol errors and J symbol erasures, as long

as 2E + J ≤ 2T.
• If B = 2W-1, the code is said to be a full-length code.
• If B < 2W-1, the code is said to be a shortened code.

Reed-Solomon codes operate in Galois fields; for an introduction to Galois field
arithmetic, see[2].

Codewords are treated as polynomials by using the codeword symbol values as the
coefficients of the polynomial. The standard convention in Reed-Solomon codes is
that the value of the first symbol (i.e. the first information symbol) in the codeword is
used as the coefficient for the xB-1 term, and the value of the last symbol in the
codeword (i.e. the last check symbol) is used at the coefficient for the x0 term.

A valid codeword has the property that, when viewed as a polynomial, it is exactly
divisible by the code generator polynomial. The code generator polynomial takes the
form:

TT
T

TLLLL

xxgxgxgg

xxxxxg
212

12
2

210

1221)())()(()(

+++++=

++++=
−

−

−+++

K

K αααα

The choice of L is somewhat arbitrary, in that all values of L result in valid Reed-
Solomon codes. Some simplifications of the decoder are possible if L=1. Some
simplifications of the encoder are possible for values of L that give rise to palindromic
generator polynomials. We have used the case where L=1.

The 2T check symbols are calculated from: b(x) = x2T a(x) mod g(x), where the
coefficients of a(x) are the information symbols, and the coefficients of b(x) are the
check symbols.

The codeword c(x) is calculated from: c(x) = x2T a(x) + b(x). This is simply a
concatenation of a(x) and b(x). The codeword c(x) is now exactly divisible by g(x).

The minimum distance between different codewords is 2T + 1. Any two codewords
will differ by at least 2T + 1 symbols; we can add T errors, and still be closer to the
original codeword that to any other.

Design of a Synthesisable Reed-Solomon ECC Core

 6 5/24/2001 10:02 AM

2 Galois field operations
2.1 Field generation
The Galois field GF(2W) is a finite field consisting of 2W elements, generated from a
primitive field generator polynomial.

For example, the Galois field GF(24) can be generated from the primitive polynomial
p(x) = x4 + x + 1.

GF(24) consist of the following elements:
 { 0, 1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14 }
where α is the root of p(x), i.e. p(α) = 0.

2.2 Representations

2.2.1 Power representation
Power representation of field elements is in the form αi where 0 ≤ i ≤ 2W – 2.

2.2.2 Tupple representation
Tupple representation of field elements uses the fact that p(α) = 0.

For example, in GF(24) generated from p(x) = x4 + x + 1:

p(x) = x4 + x + 1
p(α) = α4 + α + 1 = 0
∴α4 = α + 1

Similarly,

α5 = α α4
= α (α + 1)
= α2 + α

In general, each field element may be represented as a linear combination of αW-1…

α2 α1 and α0.

For GF(24) generated from p(x) = x4 + x + 1, the complete field is:

power
representation

tupple
representation

0 0
1 1
α α
α2 α2
α3 α3
α4 α + 1
α5 α2 + α
α6 α3 + α2
α7 α3 + α + 1
α8 α2 + 1

Design of a Synthesisable Reed-Solomon ECC Core

 7 5/24/2001 10:02 AM

α9 α3 + α
α10 α2 + α + 1
α11 α3 + α2 + α
α12 α3 + α2 + α + 1
α13 α3 + α2 + 1
α14 α3 + 1

2.2.3 Binary representation
Binary representation simply uses the coefficient of αi as the ith bit in a W-bit number.

For GF(24) generated from p(x) = x4 + x + 1, this looks like:

power

representation
tupple

representation
binary

representation

0 0 0000
1 1 0001
α α 0010
α2 α2 0100
α3 α3 1000
α4 α + 1 0011
α5 α2 + α 0110
α6 α3 + α2 1100
α7 α3 + α + 1 1011
α8 α2 + 1 0101
α9 α3 + α 1010
α10 α2 + α + 1 0111
α11 α3 + α2 + α 1110
α12 α3 + α2 + α + 1 1111
α13 α3 + α2 + 1 1101
α14 α3 + 1 1001

It is quite straightforward to show that if a linear feedback shift register is constructed
from p(x) and seeded with 1, then the sequence generated will correspond to the
binary representation sequence shown above.

2.3 Arithmetic operations
When implementing Galois field arithmetic operations, we assume the data is in
binary representation.

2.3.1 Addition
Addition in GF(2):

 0 + 0 = 0
 0 + 1 = 1
 1 + 0 = 1
 1 + 1 = 0

Addition in GF(24):

Design of a Synthesisable Reed-Solomon ECC Core

 8 5/24/2001 10:02 AM

β = b0 + b1α + b2α2 + b3α3 and γ = c0 + c1α + c2α2 + c3α3

where β , γ ∈ GF(24) and bi, ci ∈ GF(2)

β + γ = (b0 + c0) + (b1 + c1)α + (b2 + c2)α2 + (b3 + c3)α3

Thus, addition of two field elements is achieved by XORing the binary representation
of two field elements together.

The following parameterised verilog function generates the hardware for Galois field
addition:

function [WIDTH - 1 : 0] GFAdd_fn;
 input [WIDTH - 1 : 0] a;
 input [WIDTH - 1 : 0] b;
begin
 GFAdd_fn = a ^ b;
end
endfunction

2.3.2 Full multiplication
Multiplication in GF(2):

 0 . 0 = 0
 0 . 1 = 0
 1 . 0 = 0
 1 . 1 = 1

Multiplication in GF(24):

β = b0 + b1α + b2α2 + b3α3 and γ = c0 + c1α + c2α2 + c3α3

where β , γ ∈ GF(24) and bi, ci ∈ GF(2) and p(x) = x4 + x + 1

β . γ = p0 + p1α + p2α2 + p3α3 + p4α4 + p5α5 + p6α6

= p0 + p1α + p2α2 + p3α3 + p4(α + 1) + p5(α + α2)+ p6(α2 + α3)

= (p0 + p4) + (p1 + p4 + p5)α + (p2 + p5 + p6)α2 + (p3 + p6)α3
 = d0 + d1α + d2α2 + d3α3

 where
p0 = b0 c0
p1 = b0 c1 + b1 c0
p2 = b0 c2 + b1 c1 + b2 c0

p3 = b0 c3 + b1 c2 + b2 c1 + b3 c0
p4 = b1 c3 + b2 c2 + b3 c1

p5 = b2 c3 + b3 c2
p6 = b3 c3

The hardware to implement this is illustrated in Figure 1.

Design of a Synthesisable Reed-Solomon ECC Core

 9 5/24/2001 10:02 AM

b0

c0
b0.c0

b0
c1

b0.c1

b0
c3

b0.c3

b0
c2

b0.c2

b1
c0

b1.c0

b1

c1

b1.c1

b1

c3
b1.c3

b1

c2

b1.c2

b2

c0
b2.c0

b2
c1

b2.c1

b2
c3

b2.c3

b2
c2

b2.c2

b3
c0

b3.c0

b3

c1

b3.c1

b3

c3
b3.c3

b3

c2

b3.c2

p1

b0.c1

b1.c0

p2

b0.c2

b1.c1

b2.c0

p5b3.c2

b2.c3

p4

b3.c1

b2.c2

b1.c3

b0.c3

b1.c2

b2.c1

b3.c0

p3

p0b0.c0

p6b3.c3

d0

p0

p4

d1

p1

p4

p5

d3p6

p3

d2

p6

p5

p2

Figure 1 - GF(24) Multiplier

The following parameterised verilog function generates the hardware for Galois field
multiplication:

function [WIDTH - 1 : 0] GFMult_fn;
 input [WIDTH - 1 : 0] a;
 input [WIDTH - 1 : 0] b;
 reg [WIDTH * WIDTH - 1 : 0]
 andarray;
 reg [WIDTH * 2 - 2 : 0]
 product;
 reg [WIDTH - 1 : 0]
 tmp;
 integer
 i,
 j,
 prbs;
begin
 andarray = 0;
 product = 0;
 tmp = 0;
 for (i = 0; i < WIDTH; i = i + 1)
 for (j = 0; j < WIDTH; j = j + 1)
 andarray[i * WIDTH + j] = a[i] & b[j];
 for (i = 0; i < WIDTH * 2 - 1; i = i + 1)
 begin
 product[i] = 0;
 for (j = ((i < WIDTH) ? 0 : i - WIDTH + 1);
 j <= ((i < WIDTH) ? i : WIDTH - 1);
 j = j + 1)
 product[i] = product[i] ^ andarray[WIDTH * j + i - j];
 end
 for (i = 0; i < WIDTH; i = i + 1)
 begin
 tmp[i] = 0;
 prbs = 1;
 for (j = 0; j < WIDTH * 2 - 1; j = j + 1)
 begin
 if (prbs & (1 << i))
 tmp[i] = tmp[i] ^ product[j];
 prbs = prbs << 1;
 if (prbs & (1 << WIDTH))
 prbs = prbs ^ PRIMITIVE;
 end
 end
 GFMult_fn = tmp;
end
endfunction

The three loops in the verilog correspond directly to the three stages in the Figure 1.

Design of a Synthesisable Reed-Solomon ECC Core

 10 5/24/2001 10:02 AM

2.3.3 Constant multiplication
The verilog function for full multiplication can also be used when one of the operands
is a constant. If this constant is allowed to propagate through the logic, the logic can
be considerably optimised. The specific gates that are removed will depend on the
value of the constant. Synopsys can perform this optimisation automatically.

As an example, assume β = α9 = α3 + α = 1010:

β = α +α3 and γ = c0 + c1α + c2α2 + c3α3

where β , γ ∈ GF(24) and bi, ci ∈ GF(2) and p(x) = x4 + x + 1

β . γ = p0 + p1α + p2α2 + p3α3 + p4α4 + p5α5 + p6α6

= p0 + p1α + p2α2 + p3α3 + p4(α + 1) + p5(α + α2)+ p6(α2 + α3)

= (p0 + p4) + (p1 + p4 + p5)α + (p2 + p5 + p6)α2 + (p3 + p6)α3

 where

p0 = b0 c0
p1 = b0 c1 + b1 c0
p2 = b0 c2 + b1 c1 + b2 c0

p3 = b0 c3 + b1 c2 + b2 c1 + b3 c0
p4 = b1 c3 + b2 c2 + b3 c1

p5 = b2 c3 + b3 c2
p6 = b3 c3

 Now, substituting b0 = 0, b1 = 1, b2 = 0 b3 = 1
p0 = 0
p1 = c0
p2 = c1
p3 = c2 + c0

p4 = c3 + c1
p5 = c2

p6 = c3

β . γ = (c3 + c1) + (c0 + c3 + c1 + c2)α + (c1 + c2 + c3)α2 + (c2 + c0 + c3)α3
 = d0 + d1α + d2α2 + d3α

From this example it can be seen that the array of AND gates can be optimised away,
and that the result could be formed by XORing together bit combinations from the
variable input. In this case, eight 2-input XOR gates would be required.

In general, the silicon area of a constant multiplier is about 25% of that of a full
multiplier.

2.3.4 Inversion
Inversion of a field element is best done as a lookup table for small fields. The
following verilog function can be used to construct such a lookup table:

function [WIDTH - 1 : 0] GFInverse_fn;
 input [WIDTH - 1 : 0]

Design of a Synthesisable Reed-Solomon ECC Core

 11 5/24/2001 10:02 AM

 a;
 reg [WIDTH - 1 : 0]
 res,
 prbstable [0 : (1 << WIDTH) - 1];
 integer
 i,
 prbs;
begin
 prbs = 1;
 for (i = 0; i < (1 << WIDTH); i = i + 1) begin
 prbstable[i] = prbs;
 prbs = prbs << 1;
 if (prbs & (1 << WIDTH))
 prbs = prbs ^ PRIMITIVE;
 end
 res = 0;
 for (i = 0; i < (1 << WIDTH) - 1; i = i + 1)
 if (a == prbstable[i])
 res = prbstable[(1 << WIDTH) - 1 - i];
 GFInverse_fn = res;
end
endfunction

The input to the function, a, is in binary representation.

The first for loop is used to fill the prbstable memory with the binary representation
of successive field elements. The binary representation of αi is stored in prbstable
entry i.

The second for loop iterates through the table until an entry equal to a is found. The
index of that entry is i, and so the element a in power representation is αi.

The inverse of αi is α2^W - 1 - i.

The element at entry 2W - 1 - i is the inverse of a, in binary representation, and so this
value is returned by the function.

It turns out that Synopsys does a reasonable job of expanding these loops and
optimising the resultant logic, at least for the field GF(28).

2.4 Representation conversion

2.4.1 Power to tupple conversion
The following verilog implements power to tupple conversion. In our implementation
this is used to generate constants, and so no logic is actually generated:

function [WIDTH - 1 : 0] GFPtoT_fn;
 input [31:0]
 power;
 integer
 i,
 tupple;
begin
 tupple = 1;
 if (power % ((1 << WIDTH) - 1) != 0)
 for (i = 0; i < power % ((1 << WIDTH) - 1) ; i = i + 1)
 begin
 tupple = tupple << 1;
 if (tupple & (1 << WIDTH))
 tupple = tupple ^ PRIMITIVE;
 end
 GFPtoT_fn = tupple;
end
endfunction

Design of a Synthesisable Reed-Solomon ECC Core

 12 5/24/2001 10:02 AM

2.4.2 Tupple to power conversion
Tupple to power conversion is not needed.

Design of a Synthesisable Reed-Solomon ECC Core

 13 5/24/2001 10:02 AM

3 Encoder
3.1 Algorithm

The encoder needs to calculate the 2T check symbols from the B – 2T information
symbols, such that the resultant codeword is exactly divisible by the generator
polynomial.

The 2T check symbols are calculated from: b(x) = x2T a(x) mod g(x), where the
coefficients of a(x) are the information symbols, and the coefficients of b(x) are the
check symbols.

The codeword c(x) is calculated from: c(x) = x2T a(x) + b(x). This is simply a
concatenation of a(x) and b(x). The codeword c(x) is now exactly divisible by g(x).

3.2 Interface
module encoder (
 // INPUTS
 clock,
 clocken, // an active high clock enable
 reset,
 load, // Must be asserted to mark the first symbol of the message.
 din, // The symbols of the message to be encoded.

 // OUTPUTS

 active, // Asserted (high) during the output of the codeword.
 sob, // Asserted (high) to mark the first symbol of the codeword.
 eob, // Asserted (high) to mark the last symbol of the codeword.
 dout // The symbols of the codeword.
);

The system clock has the rising edge as the active edge.

The reset is an active high synchronous reset, and must be asserted for a minimum of
one clock period.

To load a B-2T symbol message into the encoder, the load signal must be asserted
with the first symbol of the message, and then de-asserted as the remaining B-2T-1
symbols of the message are clocked in over successive clock cycles. There must be a
minimum of 2T idle cycles between the B-2T symbol messages to allow time for
computation of the check symbols.

Stall cycles may be inserted at any point by taking clocken low. This freezes the state
of the whole encoder, and is equivalent to gating the clock.

There is minimal buffering within the encoder, so the first symbol of the B symbol
codeword will be output on dout a few clock cycles after load is asserted. The
remaining symbols of the codeword are output on dout over successive clock cycles.

The actual latency of the encoder (load active to sob active) is 2 clock cycles (i.e. the
equivalent of two pipeline register stages), assuming clocken is held high. Any stall
cycles add directly to the latency.

Design of a Synthesisable Reed-Solomon ECC Core

 14 5/24/2001 10:02 AM

Active is asserted (high) for the B cycles during which the codeword is being output.
Sob is asserted (high) with the first symbol of the codeword. Eob is asserted (high)
with the last symbol of the codeword.

The throughput of the encoder is such that it can output back-to-back codewords
without any idle cycles in between.

The timing diagram for a RS(160,128,T=16) code is shown below in Figure 2.

0 1 2 3 4 5 6 7 8 127

0 1 2 4 5 6 1253 126 127 128 158 159 0157

0 1 2

1 2

3 4 5

3

clocken

load

clock

din

sob

active

eob

dout

128 information
symbols

32 check
 symbols

stall stall

B=160
T=16

Figure 2 - Encoder timing diagram

This example shows one codeword, possibly followed immediately by a second one.
The diagram also shows some stall cycles. During a stall cycle the values applied to
the inputs are immaterial, and the outputs hold their previous values.

Design of a Synthesisable Reed-Solomon ECC Core

 15 5/24/2001 10:02 AM

3.3 Block diagram

dout

din din1

0

g2t-3

state

0

g2t-2

state

0

g2t-1

state

0

g1

state

0

g0

state

0

state

0

st
at

e
m

ac
hi

ne
co

un
te

r

load

= 0

= b-2t-1

= b-1

EN_IDLE
EN_CODE
EN_DATA

state

EN_CODE

EN_DATA

EN_CODE
EN_DATA

sob

eob

active

clock

reset

Figure 3 - Encoder block diagram

3.4 Operation
The classic linear-feedback shift register (LFSR) structure can be used to perform
polynomial division. For a detailed description of how this works, see [3] page 172.
The polynomial formed from the B – 2T information symbols is divided by the
generator polynomial, and the remainder of this division is used as the 2T check
symbols.

The lower half of Figure 3 implements a 2T tap LFSR. The multiplier coefficients are
the coefficients of the generator polynomial in its expanded form (i.e. gi is the
coefficient of the xi term).

The state table for the encoder block is shown below:

state count comment
EN_IDLE 0 Stay in this state until load

asserted.
EN_DATA 0
EN_DATA 1
… …
EN_DATA B - 2T - 1

Stay in this state for B – 2T cycles
while information symbols are
consumed and check symbols
calculated.

EN_CODE B - 2T

Design of a Synthesisable Reed-Solomon ECC Core

 16 5/24/2001 10:02 AM

EN_CODE B - 2T + 1
… …
EN_CODE B - 1

Stay in the state for 2T cycles
while check symbols are clocked
out.
If generating back-to-back
codewords, move straight back to
EN_DATA, else EN_IDLE.

EN_DATA or
EN_IDLE

0 etc

Table 1 - State table for the encoder block

Initially the state machine is in the EN_IDLE state.

As soon as load is asserted, the state machine moves to the EN_DATA state and the
counter starts incrementing. For the next B – 2T cycles the multiplexors connect the
adder outputs to the register inputs, thus forming an LFSR. At the end of B – 2T
cycles, the LFSR registers hold the remainder.

When the count reaches B – 2T – 1 the state machine moves to the EN_DATA state.
The multiplexors now simply connect the registers into a conventional shift register,
allowing the check symbols to be shifted out, most significant first. For the next 2T
cycles the check symbols are shifted out.

When the counter reaches B – 1, the state machine will move back to the EN_IDLE
state (if load is zero) or move back to the EN_DATA state (if there is another data
block to encode).

There is an optimisation that could be done to remove the 2T multiplexors. A gate
could be inserted in the feedback path, allowing the feedback term to be forced to
zero. This would have the same effect as switching over the multiplexors. If this were
done, the reset behaviour would change slightly. On reset, the state machine would
have to stay in the idle state for 2T cycles, allowing zeros to propagate through the
registers.

Design of a Synthesisable Reed-Solomon ECC Core

 17 5/24/2001 10:02 AM

4 Decoder
4.1 Algorithm
Almost all practical decoders reported in the literature follow the syndrome based
decoding approach. This involves the following steps:
1. Calculate the syndromes
2. Calculate the error locator polynomial σ(x) from the syndromes
3. Find the roots of the error locator polynomial σ(x) to determine the error locations
4. Calculate the error values

We have taken this approach, and included additional steps to support erasures
decoding.

Let the original codeword be represented by the polynomial:

01
2

2
2

2
1

1)(cxcxcxcxcxc B
B

B
B +++++= −

−
−

− L

Let the error pattern be represented by the polynomial:

01
2

2
2

2
1

1)(exexexexexe B
B

B
B +++++= −

−
−

− L

Let the received (corrupted) codeword be represented by the polynomial:

)()(

)(01
2

2
2

2
1

1

xexc

dxdxdxdxdxd B
B

B
B

+=

+++++= −
−

−
− L

Calculate the syndrome polynomial:

)(where

)(01
2

2
22

22
12

12

iL
i

T
T

T
T

dS

SxSxSxSxSxS
+

−
−

−
−

=

+++++=

α

L

Form the erasure locator polynomial:

erasures. theof positions symbol theare where

)()(
1

0

Jv

xx

i

J

i

vi∏
−

=

−+=Λ α

Calculate the modified syndrome polynomial:

TxxxSxT 2mod)()()(Λ⋅=

Use the extended Euclidean Algorithm to)(and)(xx ωσ that solve the key equation:
TxxxTx 2mod)()()(ωσ ≡⋅

polynomialevaluator errata theis (x)
polynomiallocator error theis)(

ω
σ x

Use the Chien search to determine the roots of }{for (x) and)()0()1(−−−∈Λ αασ LBxx

Design of a Synthesisable Reed-Solomon ECC Core

 18 5/24/2001 10:02 AM

If ixx −== ασ somefor 0)(an error has occurred in symbol i, and the error magnitude
is given by:

i
i ax

xx
x

e −=
Λ⋅

= where
)()('

)(
σ

ω

If ixx −==Λ α somefor 0)(an erasure has occurred in symbol i, and the erasure
magnitude is given by:

i
i ax

xx
x

E −=
Λ⋅

= where
)(')(

)(
σ

ω

4.2 Interface
module decoder (
 // INPUTS
 clock,
 clocken, // an active high clock enable
 reset,
 load, // Must be asserted to mark the first symbol of the codeword.
 erasurein, // A one indicates the symbol was an erasure.
 din, // The symbols of the codeword to be decoded.
 maxerasures,// The maximum number of erasure we will tolerate
 before declaring uncorrectable.

 // OUTPUTS

 active, // Asserted (high) during the output of the corrected codeword.
 sob, // Asserted (high) to mark the first symbol of the corrected codeword.
 eob, // Asserted (high) to mark the last symbol of the corrected codeword.
 dout, // The symbols of the corrected codeword.
 status, // 0 - correctable, no errors, no erasures.
 // 1 - correctable, no errors, some erasures.
 // 2 - correctable, some errors, no erasures.
 // 3 - correctable, some errors, some erasures.
 // 4 - uncorrectable, no erasures.
 // 5 - uncorrectable, some erasures.
 // 6 - uncorrectable, special case 1.
 // 7 - uncorrectable, special case 2.
 nerrors, // The number of errors (undefined if status >= 4)
 nerasures // The number of erasures.
);

The system clock has the rising edge as the active edge.

The reset is an active high synchronous reset, and must be asserted for a minimum of
one clock period.

To load a B symbol codeword into the decoder, the load signal must be asserted with
the first symbol of the codeword, and then de-asserted as the remaining B-1 symbols
of the codeword are clocked in over successive clock cycles.

Stall cycles may be inserted at any point by taking clocken low. This freezes the state
of the whole decoder, and is equivalent to gating the clock.

The latency within the decoder is approximately two codewords, and some time later
the first symbol of the corrected codeword will be output on dout. The remaining
symbols of the corrected codeword are output on dout over successive clock cycles.

Design of a Synthesisable Reed-Solomon ECC Core

 19 5/24/2001 10:02 AM

Active is asserted (high) for the B cycles during which the corrected codeword is
being output. Sob is asserted (high) with the first symbol of the corrected codeword.
Eob is asserted (high) with the last symbol of the corrected codeword.

The throughput of the decoder is such that it can output back-to-back corrected
codewords without any idle cycles in between.

The timing diagram for a RS(160,128,T=16) code is shown below in Figure 4.

0 1 158 4 140

clocken

load

clock

din

B=160
T=16

159 0 1 142 143 144 145 159 0 1 2 3 141 142 143 144 145

0 1 2117 222 158 159

sob

active

eob

dout 18 19 20 0 1

status

nerrors

nerasures

stall

306 cycles (includes one stall cycle)

305 cycles

sample status on eob

Figure 4 - Decoder timing diagram

For a RS(160, 128, T=16) code the actual latency of the encoder (load active to sob
active) is 305 clock cycles (i.e. the equivalent of 305 pipeline register stages),
assuming clocken is held high. Any stall cycles add directly to the latency

The status signals indicate whether or not the decoder was able to correct the
codeword.

In the case where the codeword was correctable (status 0, 1, 2, 3) nerrors and
nerasures indicate the numbers of errors and erasures present.

In the case where the codeword was uncorrectable (status 4, 5, 6, 7) nerrors is
undefined and nerasures indicates the number of erasures present. The codeword
(just) output in this case is not guaranteed even to be a valid codeword, and should be
treated as undefined.

The values of status, nerrors and nerasures should be sampled on the clock edge that
occurs when eob is asserted.

Design of a Synthesisable Reed-Solomon ECC Core

 20 5/24/2001 10:02 AM

The maxerasures input allows the maximum number of erasures that will be tolerated
to be reduced (below the theoretical maximum of 2T). The rational for doing this is
that it reduces the probability of a corrupted codeword with a large number of
erasures miscorrecting.

The decoder uses the following basic status codes:

0 Correctable, no errors, no erasures.
1 Correctable, no errors, some erasures.
2 Correctable, some errors, no erasures.
3 Correctable, some errors, some erasures.
4 Uncorrectable, no erasures.
5 Uncorrectable, some erasures.

Due to the internal architecture of the decoder, the status code is generated after the
decoder has attempted to correct the corrupted codeword, and is only available when
the final symbol of the corrected codeword is being output. This minimises latency.
Thus, regardless of whether the error pattern is correctable, or not, the decoder will
always attempt to correct it.

As an additional check, the decoder re-calculates the syndromes over each sequence
of symbols output by the decoder. This check is performed by the final pipeline stage
within the decoder, called the monitor block. Two additional status codes are
introduced by this block, both of which should be treated as uncorrectable:

6 Uncorrectable, special case 1. This represents the case where the status code
going in to the monitor block was 0 to 3 (i.e. correctable), yet for some reason the
syndrome of the sequence of symbols output by the decoder was non-zero, indicating
an invalid codeword. This could indicate a design error in the decoder. It could also
indicate that hardware is not operating reliably, say due to incorrect power supply
voltages, or excessive system noise.

7 Uncorrectable, special case 2. This represents the case where the status code
going in to the monitor block was 4 or 5 (i.e. uncorrectable), yet for some reason the
syndrome of the sequence of symbols output by the decoder was zero, indicating a
valid codeword. This event does occur in practise, particularly if the weight of the
error pattern is 2T + 1 (i.e. just above what is correctable). Usually the codeword,
whilst valid, is the wrong one. The only reason we expose this behaviour externally is
because it may help us to design more effective decoders in the future.

Design of a Synthesisable Reed-Solomon ECC Core

 21 5/24/2001 10:02 AM

4.3 Block diagram

V
 p

o
lyn

o
m

ial
evalu

atio
n

reset

load

polyin

active

degout

oddsum

polysum

evensum

sob

eob

degin

W
 p

o
lyn

o
m

ial
evalu

atio
n

reset

load

polyin

active

degout

oddsum

polysum

evensum

sob

eob

degin

syn
d

ro
m

e
calcu

latio
n

reset

load

din

done

syndrom
e

p
o

lyn
o

m
ial

exp
an

d
er

reset

load

polyin

done

polyout

alphai

d
elay

reset

load

done

eu
clid

's
alg

o
rith

m

reset

load

v4

done

O
out

syndrom
e

W
out

degO

degW fail

p
o

lyn
o

m
ial

scaler

reset

load

done1

polyout

degout
degW

in

O
in

degO
in

V W
in

start
done2

done3

load

din

erasurein

active
sob
eob

dout

status

nerasures
nerrors

erasu
re

list

reset

load

erasurein

done

alphai

v1v2v3v4

alphaivalid

O
 p

o
lyn

o
m

ial
evalu

atio
n

reset

load

polyin

active

degout

oddsum

polysum

evensum

sob

eob

degin

erro
r

co
rrectio

n

reset

errorin

active

data

sob

eob

datain

activein

sobin

eobin

m
o

n
ito

r

reset

active

data

sob

eob

datain

activein

sobin

eobin

status
statusin

sym
b

o
l d

elay
din

data

m
axerasures

fo
rn

ey's
alg

o
rith

m

reset

active1

v1

active

error

status

v3 O
_evensum

1

O
_sum

1

degO
1

v2 sob1
sob

eob
eob1

V
_evensum

2

V
_sum

2

W
_sum

3

fail

m
axerasures

nerrors

nerasures

B
 + 2

2T
 + 1

2T
L/N

 + 1

2

2

1
2

6

total latency:
B

 + 2T
 + 2T

L/N
 + 17

B
 + 2T

 + 2T
L/N

 + 14

Figure 5 - Decoder block diagram

Design of a Synthesisable Reed-Solomon ECC Core

 22 5/24/2001 10:02 AM

4.4 Syndrome block

4.4.1 Algorithm
The syndrome block calculates the syndromes of the codeword to be decoded.

The symbols of the codeword form the coefficients of a polynomial, where the first
symbol received is dB-1 and the last symbol received is d0:

1
1

3
3

2
210)(−

−+++++= B
B xdxdxdxddxd L

The syndromes are obtained by evaluating this polynomial at the roots of the
generator polynomial. The generator polynomial has 2T distinct roots (α, α2, α3, …,
α2T), therefore there are 2T syndromes to be calculated.

The calculation of each syndrome is performed recursively, using Horner’s rule:

)))(((

)(

1210

)1(
1

2
210

LL

L

−

−
−

+++=

++++=

=

B
iii

iB
B

ii

i
i

dddd

dddd

dsyndrome

ααα

ααα

α

The order of evaluation of this recursive calculation requires the coefficients to be
available in the order dB-1 first, through to d0 last. This matches perfectly the
transmission order of symbols into the decoder.

4.4.2 Block diagram

din1 d

st
at

e
m

ac
hi

ne
co

un
te

r

load

= B-2

S_IDLE
S_INIT
S_COUNT
S_DONE

state

S_DONE done

clock

reset

din

α2T

0

S_INIT

1

α2T-1

0

S_INIT

1

α3

0

S_INIT

1

α2

0

S_INIT

1

α1

0

S_INIT

1

syndrome

Figure 6 - Syndrome block diagram

4.4.3 Operation
The state table for the syndrome block is shown below:

Design of a Synthesisable Reed-Solomon ECC Core

 23 5/24/2001 10:02 AM

state count comment
S_IDLE 0 Stay in this state until load

asserted.
S_INIT 0 In this state, load dB-1 into each

syndrome register.
S_COUNT 1
S_COUNT 2
… …
S_COUNT B – 2

Stay in this state for B – 2 cycles
consuming symbols dB-2 to d1 and
performing the recursive
calculation.

S_DONE B – 1 Consume the last symbol, d0, and
perform the last iteration of the
recursive calculation.
If decoding back-to-back
codewords, move straight back to
S_INIT, else S_IDLE.

S_INIT or
S_IDLE

0 etc

Table 2 - State table for syndrome block

The latency of this block (assuming no stall cycles) is B + 2 cycles.

4.5 Erasurelist block

4.5.1 Algorithm
The erasurelist block contains a FIFO like structure to maintain a list of up to 2T
erasure locations.

If the first symbol of the codeword is as an erasure, a value of)1(−− Bα is queued in the
FIFO. If the next symbol is an erasure,)2(−− Bα queued in the FIFO etc.

In addition to storing the erasure locations, the erasurelist block pre-computes the
following values. Let the total number of erasures in a codeword be J, then:

otherwise 0
2T J if)2(4

3

2

1

)1(

=
≤−=

=

=

=

−−

NLJTv
v

v

Jv

JB

J

α

α

The v1, v2 and v3 values are used for the Forney block, the v4 value is used by the
Euclid block.

For details of L and N, see section 4.7.3.

Design of a Synthesisable Reed-Solomon ECC Core

 24 5/24/2001 10:02 AM

4.5.2 Block diagram

st
at

e
m

ac
hi

ne
co

un
te

r
load

= B-1

EL_IDLE
EL_COUNTING

done

clock

reset

α

α -(B-1)

0

1

1

0

1

0

1

0

1

0

1

0

1

0

control logic

= B-2

alphaivalid

alphai
0

1

0

erasurein

unload

state

state
unload

1
α -(B-1)

v3out

load1
erasureinX

α -(B-1)

(2T) L/N
(2T-1) L/N v4out

load1
erasureinX

L/N

1
α v2out

load1
erasureinX

α-

0
1 v1out

load1
erasureinX

1

load1

erasureinX

state

alphai

Figure 7 - Erasurelist block diagram

4.5.3 Operation
The state table for the syndrome block is shown below:

state count alphai comment
EL_IDLE 0 α-(B-1) Stay in this state until

load asserted.
EL_COUNTING 0 α-(B-1)
EL_COUNTING 1 α-(B-2)
… … …
EL_COUNTING B – 2 α-(1)
EL_COUNTING B – 1 α-(0)

Stay in this state for B
cycles consuming
erasure flags eB-1 to e0.

EL_IDLE or
EL_COUNTING

0 α-(B-1) etc

Table 3 - State table for erasurelist block

Design of a Synthesisable Reed-Solomon ECC Core

 25 5/24/2001 10:02 AM

The latency of this block (assuming no stall cycles) is B + 2 cycles.

4.6 Expander block

4.6.1 Algorithm
The purpose of this block is to calculate:

a) The erasure locator polynomial:

)())()(()(1210 −−−−− ++++=Λ Jvvvv xxxxx αααα L
where the set of iv−α represents the locations of J erasures where TJ 20 <≤ .

b) The modified syndrome polynomial:

)()()(xxSxT Λ⋅=
where S(x) is the syndrome polynomial.

In both cases, the same basic operation is used:

)())()(()()(1210 −−−−− ++++⋅= Jvvvv xxxxxpolyinxpolyout αααα L

To calculate T(x) the initial value loaded into polyin(x) is S(x).

To calculate S(x) the initial value loaded into polyin(x) is 1.

Design of a Synthesisable Reed-Solomon ECC Core

 26 5/24/2001 10:02 AM

4.6.2 Block diagram

st
at

e
m

ac
hi

ne
co

un
te

r

load

= 2T - 1

X_IDLE
X_PASS1
X_RELOAD
X_PASS2

state

X_PASS1
done

clock

reset

alphai

polyout

0

sel

0

1

2

3

0

sel

0

1

2

3

0

sel

0

1

2

3

1

sel

0

1

2

3

0

sel

0

1

2

3

polyin

sel: condition:
0: X_IDLE && load
1: X_RELOAD
2: (X_PASS1 || X_PASS2) && (alphai != 0)
3: (X_PASS1 || X_PASS2) && (alphai == 0)

0

1

X_IDLE |
X_PASS1

2T-1 2T-2 2 1 0

Figure 8 - Expander block diagram

4.6.3 Operation
The same hardware is used (time multiplexed) to generate both T(x) and Λ(x).

The state table for the expander block is shown below:

state count comment
X_IDLE 0 Load the polynomial register with

polyin when load asserted, them
move on.

X_PASS1 0

Design of a Synthesisable Reed-Solomon ECC Core

 27 5/24/2001 10:02 AM

X_PASS1 1
… …
X_PASS1 2T – 1

Stay in this state for 2T cycles
consuming up to 2T erasure
locations.

X_RELOAD 0 Reload polynomial register with 1.
X_PASS2 0
X_PASS2 1
… …
X_PASS2 2T - 1

Stay in this state for 2T cycles
consuming up to 2T erasure
locations.

X_IDLE 0 etc

Table 4 - State table for expander block

In the first pass the polynomial register is initialised with S(x), and over the next 2T
clock cycles the erasure locations ivα are consumed. At the end of 2T cycles, the
polynomial register holds T(x). Done is asserted at this point to indicate the cycle in
which T(x) is available.

In the second pass the polynomial register is initialised with 1 and over the next 2T
clock cycles the erasure locations ivα are consumed. At the end of 2T cycles, the
polynomial register holds Λ(x). This value is held until load is asserted again.

The erasure locations are stored in a shift register for re-use in the second pass, so that
they only need inputting once into the block. A value of zero is an invalid erasure
location, and so this is used as padding if there J < 2T.

The latency of this block (assuming no stall cycles) is 2T+1 cycles.

4.7 Euclid block

4.7.1 Algorithm
The design of this block is heavily leveraged from Gadiel Seroussi’s work. For further
details see [4] pages 205-241. Some of the diagrams are reproduced here to aid
understanding of our implementation.

higher order ω higher order σ

ωT(x) σT(x)

ω(i)(x) σ(i-1)(x),

ω(i-1)(x) σ(i)(x),

ωB(x) σB(x)

2T+2

RTOP

RBOT

Figure 9 - Data structure for Euclidean computation

This data structure efficiently holds four polynomials. The maximum degree of each
polynomial is 2T (so it takes up 2T+1 register slots). However, the algorithm is such

Design of a Synthesisable Reed-Solomon ECC Core

 28 5/24/2001 10:02 AM

that as the degree of σi(x) increases, so the degree of ωi(x) decreases. Thus it is
possible to pack both polynomials into 2T+2 register slots.

The following procedure describes the computation performed. Again, in [4] there are
many pages of mathematical proof and explanation.

Procedure E2: Extended Euclidean algorithm (modified version)

1. Initialize

)(:)(

:)(2

xTx

xx

B

T
T

=

=

ω

ω

0:)(

1:)(

=

=

x

x

B

T

σ

σ

At all times maintain)(deg)(deg xx BT ωωδ −= .

Initially 1=δ

2. Repeat 2T – J times (where J is the number of erasures):

a. set

µT := left most (leading) coefficient of ωT(x)
µB:= left most (leading) coefficient of ωB(x)

b. if µB ≠ 0 and δ > 0 (i.e. the bottom comma is to the left of the top
comma), then

swap RTOP and RBOT
swap µT and µB

c. if µB ≠ 0, then set

)()(:)(

)()(:)(

xxxx

xxxx

BBTTT

TBBTB

σµσµσ

ωµωµω
δ

δ

−=

−=

d. shift RBOT (and its comma) one position to the left.

3. output ωB(x) as ω(x) and σT(x) as σ(x).

This differs from Gadiel’s procedure in the following aspects:
i. We initialise with T(x) rather than S(x)

ii. The number of iterations is reduced from 2T to 2T - J.
iii. The sign of δ is reversed (this is purely cosmetic).

In Gadiel’s implementation, the data structure for the Euclidean computation is
exactly 2T+2 slots wide and there are O(2T) functional units (referred to as ST cells).
Each ST cell contains an adder and a multiplier. A basic iteration of procedure E2 can
be started every three cycles. The multiplier is busy in two of these cycles, and the
third is overhead. A new Euclidean computation can be started every O(6T) cycles,
and the overall latency is O(12T) cycles

Design of a Synthesisable Reed-Solomon ECC Core

 29 5/24/2001 10:02 AM

4.7.2 Basic cell design
The goal for our basic cell design is to maximize throughput and minimize latency.
Consequently, our basic cell design contains an adder and two multipliers. With
O(2T) of these basic cells, an iteration of procedure E2 can be started every cycle,
which results in a throughput and latency of O(2T) cycles. Our basic cell is illustrated
in Figure 10.

op10

1

ctop.cbot

ut

ub

op20

1

ctop

bot

top

0

1

ctop.cbot

prod1

0

1

swap

top

bot newtop0

1

(ubnequal0+swap.utnequal0).(ctop+cbot)

newctop0

1

swap

ctop

cbot

op40

1

ctop

top

bot

op30

1

ctop.cbot

ub

ut

0

1

ctop.cbot

prod2

0

1

swap

bot

top newbot0

1

(ubnequal0+swap.utnequal0).(ctop+cbot)

newcbot0

1

swap

cbot

ctop

sum

newtop'

newbot'

Figure 10 - Euclid cell design

This purely combinatorial logic handles steps (a), (b) and (c) in the procedure E2
simultaneously.

The following signals are passed into this logic:
− top – the value of the top polynomial coefficient
− ctop –flag to indicate whether the coefficient is left (0) or right (1) of the comma
− bot – the value of the bottom polynomial coefficient
− cbot –flag to indicate whether the coefficient is left (0) or right (1) of the comma
− ut – corresponds to µT at the start of step (a), prior to any swapping.
− ub – corresponds to µB at the start of step (a), prior to any swapping.
− swap – the condition tested in step (b), set to one if µB ≠ 0 and δ > 0 prior to any

swapping.
− ubnequal0 – set to one if µB ≠ 0, prior to any swapping
− utnequal0 – set to one if µT ≠ 0, prior to any swapping

The main function of the cell is to implement the computation of step (c):

)()(:)(

)()(:)(

xxxx

xxxx

BBTTT

TBBTB

σµσµσ

ωµωµω
δ

δ

−=

−=

Let i represent the index number the slot in RTOP and RBOT in Figure 9 (with an
index of 0 being at the far right hand side).

Design of a Synthesisable Reed-Solomon ECC Core

 30 5/24/2001 10:02 AM

Let topi be the value stored in slot i of RTOP.

Let boti be the value stored in slot i of RBOT.

We define the following shorthand notation:

iBi

iTi

iBi

iTi

botd

topc
topb
bota

⋅=

⋅=
⋅=
⋅=

µ

µ
µ
µ

Given the layout of the polynomials in the registers, multiplication factor δx is
obtained trivially due to the alignment of the polynomials. Although procedure E2
specifies subtraction, this the same as addition in a Galois field, and so)(ii ba − is the
same as)(ii ab − .

Consider the case where no swap occurs:

botm+1

topm+3

am+4 -
b

m+4

am+3 -
b

m+3
am+2

cm+2
cm+1 -
dm+1

cm -
dm

topm+4 topm+3 topm+2 topm+1 topm

step
a,b,c

step d

botm+4 botm+3 botm+2 botm+1 botm

topm+4

botm

Figure 11 - Euclid cell operation - no swap occurs

From this diagram it is possible to verify that the logic in Figure 10 does indeed
implement the correct logic:

position m+4 and m+3 m+2 m + 1 and m
ctop 0 1 1
cbot 0 0 1
swap 0 0 0
op1 ut ut ut
op2 bot top top
op3 ub ut ub
op4 top bot bot
prod1 ut . bot = a ut . top = c ut . top = c
prod2 ub . top = b ut . bot = a ub . bot = d
sum a + b a + c c + d
newtop top prod1 = c sum = c + d
newbot sum = a + b prod2 = a bot

Now consider the case where a swap occurs:

Design of a Synthesisable Reed-Solomon ECC Core

 31 5/24/2001 10:02 AM

topm+1

botm+3

bm+4 -
a

m+4

bm+3 -
a

m+3
bm+2

dm+2
dm+1 -
cm+1

dm -
cm

topm+4 topm+3 topm+2 topm+1 topm

step
a,b,c

step d

botm+4 botm+3 botm+2 botm+1 botm

botm+4

topm

Figure 12 - Euclid cell operation – swap occurs

From this diagram it is possible to verify that the logic in Figure 10 does indeed
implement the correct logic:

position m+4 and m+3 m+2 m + 1 and m
ctop 0 0 1
cbot 0 1 1
swap 1 1 1
op1 ut ub ut
op2 bot bot top
op3 ub ub ub
op4 top top bot
prod1 ut . bot = a ub . bot = d ut . top = c
prod2 ub . top = b ub . top = b ub . bot = d
sum a + b b + d c + d
newtop bot prod1 = d sum = c + d
newbot sum = a + b prod2 = b top

One final complication is that the computation in step (c) of procedure E2 is
conditional on (µB ≠ 0) after the swap. This is achieved by adding an additional load
condition to the final multiplexor used to generate newtop and newtop. In our design
the combinatorial cell handles steps (a), (b) and (c) simultaneously, and so this load
condition (logically) expands to:

)0()0(≠⋅+≠⋅= TB swapswapload µµ

For convenience, define the following:

)0(

)0(
)0(

>=

≠=
≠=

δ

µ
µ

c

b
a

B

T

Then,

)(

)()(

accb

acbcbbb

acbbcbload

cbswap

cbswap

⋅+⋅=

⋅⋅+⋅+⋅=

⋅⋅+⋅+=

+=

⋅=

Design of a Synthesisable Reed-Solomon ECC Core

 32 5/24/2001 10:02 AM

This can be simplified further by noting that µT is never zero. The initial value for µT
is 1 because T

T xx 2)(=ω . The only time the value of µT changes is following a swap,
when it is updated from µB, which will be non-zero or the swap would not happen.
Thus, substituting a = 1:

b
ccbload

=
⋅+⋅=)1(

For historic reasons1 the condition we actually use for load is:

b
acbb

swapload TB

=
⋅⋅+=

≠⋅+≠=)0()0(µµ

The second part of this expression is actually redundant, but does not affect the logical
operation of the system. As the design is now frozen, and there is no logical problem,
we have not changed this.

4.7.3 Cell sharing
If the throughput of the Euclidean computation O(2T) is less than the code length B,
then the decoder throughput will not be limited by the Euclid stage. In certain
applications, where overall latency is not critical, it may be advantageous to allow the
Euclidean computation be spread over additional cycles, if this reduces the
implementation size. This can be achieved by allowing a basic cell to be shared
between multiple slots in the data structure. For example, by sharing a cell between
two slots, the total number of cells required is halved, and the computation time and
latency will increase to O(4T).

In general, procedure E2 requires)8()222(2TOTTO =×× multiplications, regardless
of how it is implemented. Since our basic cell contains two multipliers, a
configuration with N basic cells will complete the computation in)4(2 NTO cycles.

The number of computation cells can be configured at synthesis time by the synthesis
parameter N. There are several constraints on N, but the main one is that it must be a
factor of the width of the data structure.

The width of the data structure is controlled by a second synthesis parameter, L,
where L ≥ 2T+2. If L = 2T+2, the data structure is identical to that shown in Figure 9.
If L > 2T+2, then some redundant cells are added. The configuration used for the
RS(160, 128, T=16) code is shown in Figure 13.

1 An oversight that only came to light as I was writing this documentation.

Design of a Synthesisable Reed-Solomon ECC Core

 33 5/24/2001 10:02 AM

degWtop = 2T+1 = 33

1 0 1

T31T30T29T28T27T26T25T24T23T22T21T20T19T18T17T16 T15T14T13T12T11T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0 0 0 0 0

degWbot = 2T = 32

δ = 1

2
redundant

slots
Example:
L = 36
N = 12
T = 16

cell1 cellcell cell cellcell cell cellcell cell cell cellN

L = 36 slots

Figure 13 - Example of the modified Euclidean data structure

It turns out that it is convenient to locate the redundant cells between the polynomials,
rather than at either end. This means their locations move as the computation
progresses. However, this does not affect the results.

The initialisation values for the top and bottom registers are also shown in Figure 13.

During the computation following variables are maintained:

degWtop – the space occupied by ωT(x) (initially 2T+1)
degWbot – the space occupied by ωB(x) (initially 2T)

At the end of the computation, ωB(x) is output as ω(x) and σT(x) is output as σ(x). The
degrees of these polynomials are calculated as follows:
 degW = degWbot
 degO = 2T + 2 – degWtop

At a register-transfer level, things get more involved. There have been examples in the
literature of similar hardware sharing schemes, but all of these required an additional
overhead in terms of multiplexors to route the data values appropriately. In our
implementation we have managed to eliminate the overhead, by forming ringlets of
registers. Data values circulate around these ringlets, and the computation cell is
connected to a fixed point. This is illustrated in Figure 14.

Design of a Synthesisable Reed-Solomon ECC Core

 34 5/24/2001 10:02 AM

0 00 10 00 01 00 0

T1 0T0 0T5 T3T4 T2T9 T7T8 T6

cell
0

cell
2

cell
1

0

Figure 14 - Implementation of euclidean computation

This example is for L=12 and N=3; each cell is shared between four slots. The shaded
multiplexors are required to load the initialisation values into the registers. Where the
initialisation values are constants, these multiplexors will be optimised. The other
three multiplexors and three additional registers implement step (d) of procedure E2,
effectively shifting the bottom registers on position left at the end of an iteration.

4.7.4 Operation
Procedure E2 requires basic 2T-J iterations, where J indicates the number of erasures.
In our implementation each iteration is spread over NL clock cycles to reduce the
number of basic cells from L to N. Thus, the number of cycles to complete the
calculation is NLJT ×−)2(.

The state sequencing of the computation varies depending on L, N, T and J, but there
are two basic cases to consider:

i. The trivial case, where there are (J=2T) erasures:

state count1 count2 done degO degW fail
E_IDLE 0 0 0 - - -
E_IDLE 0 0 1 1 2T 0

Table 5 - State table for euclid block (trivial case)

ii. The non-trivial case, where there are (J < 2T) erasures:

(this example uses L=36, N=12, T=16 and J=7)

state count1 count2 done degO degW fail
E_IDLE 0 0 0 - - -
E_CALCING 0 0 0 - - -
E_CALCING 1 1 0 - - -
E_CALCING 2 2 0 - - -
E_CALCING 3 0 0 - - -
E_CALCING 4 1 0 - - -

Design of a Synthesisable Reed-Solomon ECC Core

 35 5/24/2001 10:02 AM

E_CALCING 5 2 0 - - -
… … … … … … …
E_CALCING 72 0 0 - - -
E_CALCING 73 1 0 - - -
E_CALCING 74 2 0 - - -
E_IDLE 0 0 1 2T+2-

degWtop
degWbot (degWbot

>=
degWtop)

Table 6 - State table for euclid block (non-trivial case)

4.8 Delay block
The latency through the Euclid block is (2T-J)L/N cycles, which varies depending on
the number of erasures. To ensure the decoder as a whole has constant latency, the
next block (the scaler) is triggered 1)2(+NLT cycles after the Euclidean
computation starts, rather than on its completion. This achieved using the delay block.

4.9 Scaler block

4.9.1 Algorithm
The roots of the error locator polynomial σ(x) indicate the error locations. An
exhaustive search is used to determine these roots. This procedure is known as the
Chien search.

The convention with Reed-Solomon codes is that the on-the-wire ordering is such that
the first symbol represents the coefficient of the xB-1 term, and the last symbol
represents the coefficient of the x0 term. It is advantageous to synchronise the Chien
search with this transmission order, since this minimises buffering within the decoder
and reduces overall latency.

The Chien search involves evaluating σ(x) for }{)0()1(−−−∈ αα LBx .

For a full length code, B = 2W-1, and so the first location checked is

ααααα ==== −−−−−−−−−)1)12(()12()1)12(()1(WWWBx

The next location would be:

2)2)12(()12()2)12(()2(ααααα ==== −−−−−−−−− WWWBx

and so on. The classic approach to implementing the Chien search uses the following:

etc

xxxx

T
T

T
T

T
T

T
T

6
2

6
2

3
10

3

4
2

4
2

2
10

2

2
2

2
210

2
2

2
210

)(

)(

)(

)(

ασασασσασ

ασασασσασ

ασασασσασ

σσσσσ

++++=

++++=

++++=

++++=

K

K

K

K

Strictly speaking,)(xσ can be of degree at most T, and so there is some redundancy
here. However, the other polynomials)()(xandx Λω can be of degree 2T, and since
the scaler block is shared, we assume any of the polynomials can be of degree 2T.

Design of a Synthesisable Reed-Solomon ECC Core

 36 5/24/2001 10:02 AM

This computation can be implemented by 2T+1 stages, where each stage includes a
register, a constant multiplier and an adder, connected as shown in Figure 15.

αi

0

load

1σi

from
stage

i-1

to
stage

i+1

stage i

Figure 15 - Polynomial evaluation cell

The registers are initialised with the coefficients of σ(x). Over successive clock
cycles, the ith coefficient is repeatedly multiplied by iα , and the results summed.

One clock cycle after loading, the sum will be)(ασ ; this will be zero if there is an
error in the first symbol of the codeword. In general, after N clocks, the sum will be

)(Nασ ; this will be zero if there is an error in the Nth symbol of the codeword.

So far we have described the operation for full-length codes, where .12 −= wB In
general, we also need to handle shortened codes, where .12 −< wB

The above hardware still works in this case, but needs BW −2 clock cycles following
initialisation before the first useful result)()1(−− Bασ is obtained. This is effectively
dead time, and limits the overall throughput of the decoder, preventing it from
decoding back-to-back codewords. Note that even in the ideal case of a full-length
code, there is one cycle of dead time. This is because the initialisation value is)(0ασ
which does not correspond to a location within the codeword.

For a shortened-code, the first location checked should be

BBB WW

x −−−−−− === 2)1()12()1(αααα

The next location would be:

12)2()12()2(+−−−−−− === BBB WW

x αααα

and so on.

To eliminate the dead time, we need to scale the coefficients of)(xσ to effectively
allow the Chien search to start immediately at position B-1. This scaling is
straightforward: the ith coefficient of)(xσ needs scaling by iBW)2(−α . A bank of 2T
constant multipliers can achieve this in one cycle.

Design of a Synthesisable Reed-Solomon ECC Core

 37 5/24/2001 10:02 AM

4.9.2 Block diagram

wcomb

ocomb

st
at

e
m

ac
hi

ne

start SC_IDLE
SC_A
SC_B
SC_C

state
SC_A done1

done3

done2

clock

reset

SC_B

SC_C

=0

=0

=0

Oin

load

load

load

load

degOin

degWin

V

Win

muxpoly

state

state
priority

encoder
degout

polyout

multiply by α i(2^W-B)

W

W

W

newpolyout

nonzero

W

W

W

i=2T

i=1

i=0

...

i=2T

i=1

i=0

...

load

A
B
C

A
B
C

2T

2T+1

(2T+1)*W(2T+1)*W

(2T+1)*
(W+1)

(2T+1)*
(W+1)

leadingzeros

Figure 16 - Polynomial scaler block diagram

4.9.3 Operation
The scaler block implements the polynomial scaling described above. There are three
polynomials that need scaling. These are the error locator polynomial)(xσ and the
errata evaluator polynomial)(xω from the Euclid block, and the erasure locator
polynomial)(xΛ from the Polynomial Expander block. Once start is asserted, these
are processed over successive clock cycles. The three done signals indicate to
successive blocks when each scaled polynomial (and its true degree) is available.
These signals will be skew by one cycle with respect to each other.

The format of the polynomials)(xσ and)(xω from the Euclid block is somewhat
strange, due to the layout of registers within that block. The Ocomb and Wcomb
functions in the scaler serve to map)(xσ and)(xω to a standard format, illustrated in
Figure 17. Note that the)(xΛ polynomial does not require any reformatting.

Design of a Synthesisable Reed-Solomon ECC Core

 38 5/24/2001 10:02 AM

0 ω K 0 1 X 1 X0ω 1 ω 0

1 σ J10 X 0 X 1σ 1σ 0... ...

ω K 0 0ω 1 ω 0

σ J

... ...

... σ 1 σ 0 0 0...

Ocomb

Wcomb

0(2T+1)(W+1)-1

0(2T+1)(W)-1

0(2T+1)(W+1)-1

0(2T+1)(W)-1

Figure 17 - Reformatting of polynomials in scaler

Note that the alignment of σ(x) and ω(x) is such that the polynomials are scaled. More
specifically, if σ(x) is of degree J, then the scale factor is x2T-J. Similarly, the scale
factor for ω(x) is x2T-K. These scale factors are compensated for in the Forney block.

Since the result of the Euclid block is only valid for one cycle, the scaler block
includes registers to capture the result when available. These are loaded when the load
signal is asserted. The load signal is driven from the done signal from the Euclid
block.

The last function performed by the scaler block is to calculate the true degrees of the
polynomials, since the results of the Euclid block may include leading zeros. The
number of leading zeros is counted, using a priority encoder, and this value is
subtracted from the degree output by the Euclid block. The true degrees of the
polynomials are used by the Forney block to detect uncorrectable error patterns.

The latency of this block (assuming no stall cycles) is 2 cycles.

4.10 Polynomial evaluation block

4.10.1 Algorithm
Polynomial evaluation is part of the Chien search, as described in section 4.9.1.

We sum the odd and even terms separately, for reasons described in section 4.11.

Design of a Synthesisable Reed-Solomon ECC Core

 39 5/24/2001 10:02 AM

4.10.2 Block diagram

st
at

e
m

ac
hi

ne
co

un
te

r
load

= 0

= b-1

F_IDLE
F_COUNTING

state

F_COUNTING

sob

eob

active

clock

reset

α2T

0

load

1

α2T-1

0

load

1

α2T-2

0

load

1

α2

0

load

1

α1

0

load

1

α0

0

load

1

evensum

oddsum

sum

α2T-3

0

load

1

polyin

Figure 18 - Polynomial evaluation block diagram

4.10.3 Operation
The state table for the polyeval block is shown below:

state count comment
F_IDLE x Stay in this state until load

asserted.
F_COUNTING 0
F_COUNTING 1
… …
F_COUNTING B - 1

Stay in this state for B cycles
while Chien search is being
performed. Polynomial is
evaluated at B different values.

F_IDLE or
F_COUNTING

x or 0 Loop back to f_counting if load
asserted immediately, else return
to f_idle.

Table 7 - State table for polynomial evaluation block

The latency of this block (assuming no stall cycles) is 2 cycles.

Design of a Synthesisable Reed-Solomon ECC Core

 40 5/24/2001 10:02 AM

4.11 Forney block

4.11.1 Algorithm
The Chien search involves simply evaluating σ(x), ω(x) and Λ(x) for

){)0()1(−−−∈ αα LBx . From these values, the Forney equations are used to actually
calculate the error magnitudes.

The general form of the Forney equations is:

If ixx −== ασ somefor 0)(an error has occurred in symbol i, and the error magnitude
is given by:

i
i ax

xx
x

e −=
Λ⋅

= for
)()('

)(
σ

ω

If ixx −==Λ α somefor 0)(an erasure has occurred in symbol i, and the erasure
magnitude is given by:

i
i ax

xx
x

E −=
Λ⋅

= for
)(')(

)(
σ

ω

LEMMA 1: If 0)(=xσ then it is possible to obtain)(' xxσ by summing either the
odd or even power terms of)(xσ .

PROOF:

We can write)(xσ as:

01
2

2
3

3
12

12
2

2)(σσσσσσσ ++++++= −
− xxxxxx T

T
T

T L

The derivative of σ(x) is:

12
2

3
22

12
12

2 23)12(2)(' σσσσσσ ++++−+= −
−

− xxxTxTx T
T

T
T L

Because we are working in a Galois field, the following hold true:

i
i

i
i

i
i

i
i

i
i

i
i

i
i

xxxnnxn

xxnnxn

1111

111

)10()1()12(

0)0()()2(

++++

+++

=+=++=+

==+=

σσσσ

σσσ

Therefore, σ’(x) can be simplified to:

1
2

3
22

12)(' σσσσ +++= −
− xxx T

T L

and so,

xxxxx T
T 1

3
3

12
12)(' σσσσ +++= −

− L

Thus, we can obtain)(' xxσ by simply summing the odd terms of)(xσ .

Observe also that we are only interested in)(' xσ where 0)(=xσ . This means that the
sum of the odd terms must equal the sum of the even terms.

Design of a Synthesisable Reed-Solomon ECC Core

 41 5/24/2001 10:02 AM

Hence, we can also obtain)(' xxσ by simply summing the even terms of)(xσ .

LEMMA 2: The scale factors resulting from the misalignment the polynomials σ(x)
and ω(x) when loaded into the polynomial evaluation block can be easily determined:

PROOF:

At the start of the Euclidean computation:

12)(deg
)()(

2)(deg

)(2

−=∴
=

=∴

=

Tx
xTx

Tx

xx

B

B

T

T
T

ω
ω

ω

ω

At the end of the Euclidean computation, the final degrees of the polynomials are:

BB

TT

BB

TT

dx

dx
dTx

dTx

+=

=
−−=

−=

1)(deg

)(deg
12)(deg

2)(deg

σ

σ
ω
ω

Each iteration of the computation can only increase dT or dB by one, it follows that
after 2t - J iterations:

TB

BT

dJTd
JTdd

−−=
−=+

2
2

.

Thus, at the end of the computation:

T

T

T

T

B

B

d
xx

Jd
dJTT

dT
xx

=
=

−+=
−−−−=

−−=
=

)(deg)(deg

1
)2(12

12
)(deg)(deg

σσ

ωω

When polynomials σ(x) and ω(x) are evaluated, we avoid shifting them to the correct
position, hence a scale factor is included. More specifically, if the degree of the
polynomial is d, then the scale factor is x2T-d. Therefore,

Design of a Synthesisable Reed-Solomon ECC Core

 42 5/24/2001 10:02 AM

T

T

T

T

T

T

dT
EVENORODD

dT
EVENORODD

dT

dT

JdT

JdT

x

x
x

x

x
xx

also
x

x
x

xxx
x

x
x

xxx

−+

−

−

−

−+−

−+−

=∴

=

=∴

=

=∴

=

12
__

2
__

2

2

)1(2

)1(2

)(
)('

)(
)('

)(
)(

)()(

)(
)(

)()(

σ
σ

σ
σ

σ
σ

σσ

ω
ω

ωω

r

r

r
r

r
r

Also, as

Using the results of Lemma 1 and Lemma 2 we can re-write the Forney equations:

)()(
)(

)(
1

)(
)(

)()('
)(

__

__

12

)1(2

xx
xx

xx
x

x
x

xx
x

e

EVENORODD

J

EVENORODD

dT

JdT

i

T

T

Λ⋅
⋅

=

Λ
⋅⋅=

Λ⋅
=

−+

−+−

σ
ω

σ
ω

σ
ω

r
r

r
r

and similarly:

)()(
)(

)()(
)(

)(')(
)(

__

__

2

)1(2

xx
xxJ

x
x

x
x

x
x

xx
x

E

EVELORODD

i

EVENORODD

dT

JdT

i

T

T

Λ⋅
⋅

=

Λ
⋅⋅=

Λ⋅
=

−

−

−+−

σ
ω

σ
ω

σ
ω

r
r

r
r

These equations are directly implemented.

The other function implemented in the Forney block is the detection of uncorrectable
error patterns.

Let nerasures be the number of symbols declared as erasures.

Let nerrors be the number of distinct roots of }{for)()0()1(−−−∈ αασ LBxx

Design of a Synthesisable Reed-Solomon ECC Core

 43 5/24/2001 10:02 AM

If any of the following conditions arise, then the error pattern is declared
uncorrectable:

• The Euclidean computation terminated mid-division (i.e. bottom comma is aligned

with, or to the right of, the top comma).
• nerasures exceeds the decoder maxerasures input.
• nerrors differs from the true degree of)(xσ .
• nerasures + 2 * nerrors > 2T
• A root of)(xσ co-incides with a root of)(xΛ (i.e. the same location is both an

error and an erasure)

Design of a Synthesisable Reed-Solomon ECC Core

 44 5/24/2001 10:02 AM

4.11.2 Block diagram

active1 act ive

sob1 sob

eob1 eob

O_sum1 = 0

O_evensum1

0

1

O_value3

V_sum2 = 0

V_evensum2

V_value3 error4 error5

W_sum3

error6

0

1

0
error

clock

reset

0

1

1

0

V_factor2

1

0
V_mult2

sob1

sob1

v 2

v 1

v 3

errorcount3

coincidentroot3

status

nerrors

nerasures
1

0

sob1

1

0

sob3
erasurecount

1

0

sob3
degO3

degOstable

erasurecountstable

1

0

sob3

failstablefail

inversion

Figure 19 - Forney block diagram

4.11.3 Operation
This block is implemented as a heavily pipelined datapath, driven by the three
polynomial evaluation blocks for σ(x), Λ(x) and ω(x). There is one cycle skew
between each of these blocks, due to the scaler, thus the results feed into the datapath
at different stages.

Design of a Synthesisable Reed-Solomon ECC Core

 45 5/24/2001 10:02 AM

The first multiplier corresponds to the multiplication on the denominator of the
Fourney equations. The arguments are selected according to whether this symbol is an
error or an erasure (it cannot be both). This is followed by an inversion and then two
further multiplications, one to multiply in ω(x) and the other to multiply in the
correction factor xJ. The final multiplexor ensures that a zero error value is output
when there is no error or erasure.

The erasurelist block pre-computes the following values (for J erasures)

JB

J

v

v

Jv

)1(3

2

1

−−=

=

=

α

α

The correction factor v_factor2 is calculated recursively, the sequence being:

1,,,,, 2)3()2()1(JJJBJBJB −−−−−−−− ααααα L

It can be seen by inspection that this corresponds to }{for -(0))1(αα L−−∈ BJ xx .

Some brief comments on the timing constraints:

The signals v1, v2, v3 are generated by the erasurelist block and change when it’s
done signal is asserted. They are then held for a minimum of B cycles. The Forney
block samples them on sob1, thus:

Constraint 1: erasurelist.done ⇒ forney.sob1 ≤ B cycles
 (2T + 1) + (2TL/N + 1) + 4 ≤ B cycles

The signals degO3, fail are generated by the Euclid block and change when it’s done
signal is asserted. They are them held for a minimum of B cycles. The Forney block
samples them on sob3, thus:

Constraint 2: Euclid.done ⇒ forney.sob3 ≤ B cycles.
 (2TL/N + 1) + 6 ≤ B cycles

Generally constraint 1 will be the limiting factor.

The nerasures, nerrors and status outputs of the Forney block change on eob3, and
thus are valid 3 cycles prior to the eob output. They are then held for a minimum of B
cycles.

The latency of this block (assuming no stall cycles) is 6 cycles.

4.12 Symbol delay block
This block is trivial – it introduces a delay on the symbol data, to compensate for the
delay through the previous blocks in the decoder. It is implemented as a symbol-wide
shift register.

This needs to include:

− B+2 stages to compensate for the syndrome block
− 2T+1 stages to compensate for the polynomial expander block

Design of a Synthesisable Reed-Solomon ECC Core

 46 5/24/2001 10:02 AM

− (2TL/N)+1 stages to compensate for the Euclid/delay blocks
− 2 stages to compensate for the scaler block
− 2 stages to compensate for the polynomial evaluation block
− 6 stages to compensate for the Forney block

Totalling these up yields B+2T+(2TL/N)+14 stages.

For B=160, T=16. L=36 and N=12 this works out at 302 stages.

4.13 Error correction block
This block is trivial – error correction is done by XORing the delayed input data with
the error output of the Forney block.

The latency of this block (assuming no stall cycles) is 1 cycle.

4.14 Monitor block

4.14.1 Algorithm
As an additional check, the decoder re-calculates the syndromes over each sequence
of symbols output by the decoder. This check is performed by the final pipeline stage
within the decoder, called the monitor block.

If the status code was 0 to 3, the sequence of symbols output by the decoder should
always correspond to a valid codeword (i.e. the syndromes will be zero). If this is not
the case, the status code is replaced with 6.

If the status code was 4 or 5, the sequence of symbols output by the decoder is
unlikely to be a valid codeword (i.e. one or more of the syndromes should be non-
zero). If this is not the case, the status code is replaced with 7.

The status codes 6 and 7 should always be treated as uncorrectable.

Design of a Synthesisable Reed-Solomon ECC Core

 47 5/24/2001 10:02 AM

4.14.2 Block diagram

ddin

α2T

0

sobin

1

α2T-1

0

sobin

1

α3

0

sobin

1

α2

0

sobin

1

α1

0

sobin

1

syndrome1

activein active

sobin sob

eobin eob

statusin status

clock

reset

Figure 20 - Monitor block diagram

4.14.3 Operation
This block is implemented as a pipelined datapath. The status code from the Forney
block is modified as follows:

if (eob1 == 1)
 if ((statusin < 4) && (syndrome1 != 0))
 status <= 6;
 else if ((statusin >= 4) && (syndrome1 == 0))
 status <= 7;
 else
 status <= statusin;

The latency of this block (assuming no stall cycles) is 2 cycles.

Design of a Synthesisable Reed-Solomon ECC Core

 48 5/24/2001 10:02 AM

5 Synthesis
5.1 Source file layout

ReadMe

rs/ReadMe

Parameter configuration

rs/params.v

Verilog source files

rs/encoder.v
rs/decoder.v
rs/delay.v
rs/erasurelist.v
rs/euclid.v
rs/expander.v
rs/fourney.v
rs/messagedata
rs/monitor.v
rs/polyeval.v
rs/scaler.v
rs/symboldelay.v
rs/syndrome.v
rs/EuclidCell.v
rs/EuclidCell_fn.v
rs/EuclidCell_fn_body.v
rs/GFAdd.v
rs/GFAdd_fn.v
rs/GFAdd_fn_body.v
rs/GFInverse.v
rs/GFInverse_fn.v
rs/GFInverse_fn_body.v
rs/GFMult.v
rs/GFMult_fn.v
rs/GFMult_fn_body.v
rs/GFPtoT_fn.v

Synthesis control scripts

rs/RUNSYN
rs/reedsolomon.script

Galois arithmetic synthetic library
galois/GALOIS_GFAdd_mod.v
galois/GALOIS_GFMult_mod.v
galois/analyze.script
galois/galois.sl
galois/galois.sldb

5.2 Configuring the design
The design configuration is contained in the params.v file.

5.2.1 Parameters
The following parameters define the specific Reed-Solomon code:

• T - The code error correction capability.

Design of a Synthesisable Reed-Solomon ECC Core

 49 5/24/2001 10:02 AM

• B - The code length.
• WIDTH - The width (in bits) of a code symbol.
• PRIMITIVE - The primitive field generator polynomial for the code. The

binary representation of this number is used to form the field generator
polynomial.

• GENERATOR - The code generator polynomial whose first root must be α.
This value can be calculated using the Generate.c program.

The following parameters configure the layout of the registers in the Euclid block, as
described in section 4.7.3.

• L - The number of logical stages in the Euclid block.
• N - The number of physical stages in the Euclid block.

For example, for an RS(160, 128, T=16) code over the galois field

01)(from generated)2(23488 =++++= xxxxxpGF the correct values are:

L = 36
N = 12
T = 16
WIDTH = 8
PRIMITIVE = 285
B = 160
GENERATOR = 256'he81dbd328ef6e80f2b52a4ee019e0d77
 9ee086e3d2a3326b281b68fd18efd82d

There are several constraints on L and N:

• L must be even
• L must be ≥ 2 T + 2 (the size of Gadiels array)
• N must be less than L
• N must be a factor of L
• (2T + 1) + (2TL/N + 1) + 4 ≤ B cycles (see constraint 1 in section 4.11.3)
• (2TL/N + 1) + 6 ≤ B cycles (see constraint 2 in section 4.11.3)

Example1: B = 160, T = 16, L = 36, N = 12

ð 134 ≤ 160
ð this is acceptable

Example2: B = 160, T = 16, L = 36, N = 9

ð 165 > 160
ð this is unacceptable (breaks constraint 1)

5.2.2 Clock enable
To configure the design with a synchronous clock enable, define the following macro
in the params.v file:

`define ALWAYS_AT_POSEDGE_CLOCK always @(posedge clock) if (clocken == 1)

To configure the design without a synchronous clock enable, define the following
macro in the params.v file:

`define ALWAYS_AT_POSEDGE_CLOCK always @(posedge clock)

Design of a Synthesisable Reed-Solomon ECC Core

 50 5/24/2001 10:02 AM

De-asserting the clock enable essentially freezes the state of the whole design, rather
like a gated clock.

Note that including a synchronous clock enable can add considerably (10%-20%) to
the overall area, since a 2-input multiplexor needs to be added to the front of each
flip-flop. This overhead might be reduced if the target ASIC library includes flip-flops
with a built-in clock enable.

5.2.3 Synthetic libraries
The Galois field addition and multiplication operator implementations supplied from a
used defined synthetic library. This has two advantages:

i. A level of hierarchy is created automatically for each synthetic operator,
thus reducing the number of gates at any one level. This has a dramatic
(approximately 80%) reduction in synthesis time.

ii. Constants are automatically propagated into these operators, allowing
constant multipliers to be optimised automatically (as described in section
2.3.3)

A verilog function is mapped to a synthetic operator using the Synopsys
map_to_operator directive:

function [WIDTH - 1 : 0] GFAdd_fn;
// synopsys map_to_operator gfadd_op
// synopsys return_port_name x
`include "GFAdd_fn_body.v"

function [WIDTH - 1 : 0] GFMult_fn;
// synopsys map_to_operator gfmult_op
// synopsys return_port_name x
`include "GFMult_fn_body.v"

An alternative is to compile the adder and multiplier as standalone modules, and then
use the Synopsys map_to_module directive. The –boundary_optimization flag to
the Synopsys compile command should be used, as in this case constant propagation
does not occur automatically. The results achieved are similar, but with an increased
compile time.

5.3 Synthesising the design

5.3.1 Build script
To synthesise the design, make sure you have a valid .synopsys_dc.setup file in
your home directory. Then execute the following:

cd galois
./dc_shell –f analyze.script
cd rs
mkdir WORK
./RUNSYN
cd run_<date>
cat errors.txt (there should be none)
cat warnings.txt (there will be a few)

For reference, here is the current RUNSYN file:

#!/bin/csh

create a results directory

Design of a Synthesisable Reed-Solomon ECC Core

 51 5/24/2001 10:02 AM

set dir=run_`date +"%d%h%y_%H%M"`

run synopsys
dc_shell -f reedsolomon.script | tee build.log

move results files to results directory
mkdir $dir
mv build.log command.log $dir
mv *.area *.timing *.routing *.cells *.db *.vg $dir

perform some post processing of results
cd $dir

echo Checking for errors:
grep "Error" build.log | tee errors.log

echo Checking for warnings:
grep Warning build.log | tee warnings.log

printf "%-12s %10s %10s %10s %10s %12s\n" "module" "comb area" "reg area" "net
area" "total area" "timing" | tee summary.log

foreach file (`/bin/ls *.area`)

 set i=`echo $file | cut -d'.' -f1`
 set name=`echo $i | cut -d'_' -f1`

 set a1=`cat ${i}.area | grep "Combinational area" | cut -d':' -f2 | cut -
d'.' -f1 | awk '{print $1}'`
 set a2=`cat ${i}.area | grep "Noncombinational area" | cut -d':' -f2 | cut -
d'.' -f1 | awk '{print $1}'`
 set a3=`cat ${i}.area | grep "Net Interconnect area" | cut -d':' -f2 | cut -
d'.' -f1 | awk '{print $1}'`
 set a4=`cat ${i}.area | grep "Total cell area" | cut -d':' -f2 | cut -d'.' -
f1 | awk '{print $1}'`
 set cp=`cat ${i}.timing | grep "data arrival time" | head -1 | awk '{print
$4}'`

 printf "%-12s %10s %10s %10s %10s %12s\n" $name $a1 $a2 $a3 $a4 $cp | tee -a
summary.log

end

For reference, here is the current reedsolomon.script file:

/*
 * EQN-10 - warning: Defining new variable
 * VAL-3 - warning: Parameter/generic value exceeds the threshold length 20
 */
suppress_errors = { EQN-10 VAL-3 }
high_fanout_net_threshold = 0
search_path = search_path + ../galois
define_design_lib GALOIS -path ../galois
synthetic_library = synthetic_library + "galois.sldb"
link_library = link_library + "galois.sldb"
define_design_lib WORK -path ./WORK
hlo_resource_allocation = none
hlo_resource_implementation = area_only

foreach (DESIGN, { GFAdd, GFMult, GFInverse }) {
 analyze -format verilog DESIGN + ".v"
 elaborate DESIGN
 set_max_area 0
 set_fix_multiple_port_nets -all
 check_design
 compile
}
foreach (DESIGN, { EuclidCell }) {
 analyze -format verilog DESIGN + ".v"
 elaborate DESIGN
 set_max_area 0
 set_fix_multiple_port_nets -all
 uniquify
 check_design
 compile

Design of a Synthesisable Reed-Solomon ECC Core

 52 5/24/2001 10:02 AM

 set_dont_touch current_design
}
foreach (DESIGN, { delay polyeval expander erasurelist scaler fourney monitor
syndrome euclid symboldelay decoder encoder }) {
 analyze -format verilog DESIGN + ".v"
}
foreach (DESIGN, { encoder decoder }) {
 elaborate DESIGN
 uniquify
 create_clock -period 1000 clock
 set_max_area 0
 set_fix_multiple_port_nets -all
 check_design
 compile
 write -format db -hierarchy -output DESIGN + ".db"
 write -format verilog -hierarchy -output DESIGN + ".vg"
 report_timing -nets > DESIGN + ".timing"
 report_area > DESIGN + ".area"
 report_routability > DESIGN + ".routing"
 report_cell > DESIGN + ".cells"
}
d1 = "syndrome"
d2 = "erasurelist"
d3 = "expander"
d4 = "euclid"
d5 = "delay"
d6 = "euclid"
d7 = "scaler"
d8 = "polyeval_0"
d9 = "polyeval_1"
d10 = "polyeval_2"
d11 = "fourney"
d12 = "symboldelay"
d13 = "monitor"
foreach (DESIGN, { d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 }) {
 echo DESIGN
 current_design DESIGN
 report_timing -nets > DESIGN + ".timing"
 report_area > DESIGN + ".area"
 report_routability > DESIGN + ".routing"
 report_cell > DESIGN + ".cells"
}
quit

5.3.2 Results
The following results were obtained for the RS(160, 128, T=16) code, targeting the
Agere MACO libraries:

submodule comb area reg area net area total area timing
delay 175 160 11 335 0.34
erasurelist 3619 6624 352 10243 0.39
euclid 31158 13128 1794 44286 0.68
expander 30819 8625 1390 39444 1.08
fourney 7235 3360 422 10595 0.39
monitor 11253 4496 487 15749 0.39
polyeval 11360 4993 500 16353 0.34
polyeval 11360 4993 500 16353 0.34
polyeval 11360 4993 500 16353 0.34
scaler 17154 13040 1006 30194 0.34
symboldelay 16912 38656 1329 55568 0.34
syndrome 10948 4552 481 15500 1.38

module comb area reg area net area total area timing
encoder 13299 4560 538 17859 6.78
decoder 163531 107796 8615 271327 13.78

The area figures are in grids (an Agere metric). For the MACO process, the gate
density is quite low (2.55 gates/grid) and so the apparent gate counts are quite high.
The encoder comes out at 7.0K gates and the decoder comes out at 106K gates.

Design of a Synthesisable Reed-Solomon ECC Core

 53 5/24/2001 10:02 AM

Moving to their HL200CDE standard cell library, with a gate density of 3.23
gates/grid improves matters. The encoder comes out at 5.5K gates and the decoder
comes out at 84K gates.

If the synchronous clock enable is removed, and the standard cell library used, the
area is significantly less. The encoder comes out at 5.0K gates and the decoder comes
out at 73K gates.

Design of a Synthesisable Reed-Solomon ECC Core

 54 5/24/2001 10:02 AM

6 References

[1] Verification of a Synthesisable Reed-Solomon ECC Core, HPL Technical
Report HPL-2001-125, David Banks, May 2001.

[2] Introduction to finite fields and their applications, Rudolf Lidl and Harald
Niederreiter, Cambridge University Press, 1994.

[3] Error Control Coding, Shu Lin and Daniel J Costello, Jr., Prentice Hall, 1983.
[4] Reed-Solomon codes and their applications, edited by Stephen B Wicker and

Vijay K Bhargava, IEEE Press, 1994.

